Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plättchen statt Quantenpunkte

04.04.2017

Forscher um ETH-Professor David Norris klären anhand eines Modells den generellen Mechanismus, wie sich Nano-Plättchen bilden. Mit Katzengold konnten sie ihre Theorie auch gleich bestätigen.

Die Wissenschaft erforscht seit den 1980er Jahren farbig leuchtende Quantenpunkte (engl.: Quantum Dots, QDs), und mittlerweile sind diese Nano-Kristalle auch im Alltag angekommen: Die Elektronikindustrie setzt solche in LCD-Fernsehern ein, um die Farbwiedergabe und damit die Bildqualität stark zu verbessern.


Künstlerische Darstellung der nur wenige Atomschichten dicken Nanoplättchen

Lauren Aleza Kaye / ETH Zürich

Quantenpunkte sind kugelförmige Nanokristalle aus Halbleitermaterial. Werden diese Kristalle mit Licht angeregt, leuchten sie grün oder rot – je nach ihrer Grösse, die zwischen zwei und acht Nanometern liegt. Die kugeligen Formen lassen sich sehr kontrolliert erzeugen.

Rechteckige hauchdünne Kristalle

Vor wenigen Jahren tauchte mehr oder weniger zufällig eine neue Art von Nanokristallen auf dem Radar der Forscher auf: Nano-Plättchen. Diese zweidimensionalen Strukturen sind wie Quantenpunkte nur wenige Nanometer gross, aber von einheitlicher flächiger rechteckiger Form. Sie sind extrem dünn, oft nur wenige Atom-Schichten dick. Diesem Umstand verdanken die Plättchen eine ihrer auffälligsten Eigenschaften: ihr Leuchten ist extrem rein.

Bis jetzt rätselhaft war jedoch, wie die Plättchen entstehen und welche Gesetzmässigkeiten dahinter stehen. ETH-Professor David Norris und sein Team haben das Geheimnis nun gelüftet: «Wir wissen nun, dass es keine magische Formel gibt, um Nanoplättchen zu erzeugen – nur Wissenschaft», betont der Professor für Materialtechnik der ETH Zürich.

In einer soeben in der Fachzeitschrift «Nature Materials» erschienenen Studie zeigen die Forscher anhand von Cadmiumselenid-Nanoplättchen auf, wie diese ihre spezielle flache Form erreichen.

Wachstum ohne Schablone

Bislang ging die Forschung davon aus, dass es für dieses passgenaue Wachstum eine Art Formvorlage brauchte. Wissenschaftler vermuteten eine Art Schablone, die durch Mischung spezieller Ausgangsverbindungen und Lösungsmitteln entsteht, in welchen sie diese flachen Nanokristalle erzeugten.

Norris und Kollegen konnten jedoch in Experimenten keinen Einfluss solcher Formvorlagen nachweisen – im Gegenteil: Die Plättchen können in einfachen Schmelzen der Ausgangsstoffe Cadmium-Carboxylat und Selen gänzlich ohne Lösungsmittel wachsen.
Theoretisches Wachstumsmodell erstellt

Aus dieser Erkenntnis entwickelten die Forscher ein theoretisches Modell, mit dem sie das Wachstum der Plättchen simulierten. Dank dieses Modelles zeigen die Wissenschaftler auf, dass sich zuerst spontan ein Kristallisationskern aus wenigen Cadmium- und Selen-Atomen bildet. Dieser Kristallisationskern kann sich wieder auflösen und anders formieren. Hat er jedoch eine kritische Grösse überstiegen, wächst er schliesslich zum Plättchen aus.

Aus energetischen Gründen wächst der flache Kristall nur an seiner Schmalseite, und zwar um bis zum Tausendfachen schneller als auf seiner Fläche. Auf dieser Seite ist das Wachstum wesentlich langsamer weil dort mehr mangelhaft gebundene Atome an der Oberfläche vorhanden sind. Um diese zu stabilisieren wird Energie benötigt.

Modell experimentell bestätigt

Zu guter Letzt konnten die Forscher ihr Modell auch experimentell bestätigen, indem sie im Labor Nano-Plättchen aus Katzengold (Pyrit, FeS2) herstellten. Diese Plättchen liessen sich exakt anhand der Modellvorhersage mit den Ausgangsstoffen Eisen- und Schwefel-Ionen erzeugen.

«Dass wir solche Kristalle erstmals auch aus Katzengold schaffen konnten, ist sehr interessant», findet Norris. «Das hat uns gezeigt, dass wir unsere Forschung auf weitere Materialien ausdehnen können.» Cadmium-Selenid gilt zwar als das bestbekannte Halbleitermaterial, mit dem solche Nanokristalle bisher erforscht wurden. Allerdings ist es hochgiftig und daher für den Alltagseinsatz nicht brauchbar. Ein Ziel der Forscher ist es deshalb, Nano-Plättchen aus weniger giftigen oder ungiftigen Substanzen zu erzeugen.

Weitere Entwicklung ist offen

Über das Potenzial der Nano-Plättchen kann Norris derzeit nur spekulieren. Sie seien eine interessante Alternative zu Quantenpunkten, da sie gegenüber diesen mehrere Vorteile böten, sagt er. So können sie Farben wie Grün besser und leuchtender erzeugen. Auch übertragen sie effizienter Energie, was sie für den Einsatz in Solarzellen prädestinieren würde. Und auch für Laser wären solche Plättchen geeignet.

Sie haben aber auch Nachteile. Bei Quantenpunkten lässt sich beispielsweise die Farbe stufenlos einstellen, indem Kristalle verschiedener Grösse erzeugt werden. Nicht so bei Plättchen. Deren Farbe ist aufgrund der Schichtung der Atomlagen nur stufenweise verschiebbar.

Diese Einschränkung lässt sich aber mit bestimmten «Tricks» mildern: Die Wellenlänge des von den Plättchen abgegebenen Lichts lässt sich durch Verkapselung in ein anderes Halbleitermaterial feiner einstellen.

«Nur die Zeit wird es zeigen, ob sich das Interesse der Bildschirm-Industrie für unsere Entdeckung wecken lässt», sagt Norris. Einige Firmen setzen zurzeit organische LED (Oled) ein, andere verwenden Quantenpunkte. Wohin die Technologie sich entwickelt, ist unklar. Die vorliegende Studie ist jedoch eine wichtige Basis, um eine breite Palette von Nanoplättchen-Materialien untersuchen zu können. «Dies könnte Halbleiter-Nanokristallen in Zukunft einen wesentlichen Vorteil verschaffen», so der ETH-Professor.

Literaturhinweis

Riedinger A, Ott FD, Mule A, Mazzotti S, Knüsel PN, Kress SJP, Prins F, Erwin SC, Norris DJ. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nature Materials, Published Online 3rd April 2017. DOI 10.1038/nmat4889

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/04/katzengold...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics