Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnis über tropfende Dichtungen

18.06.2012
Simulationen auf Jülicher Superrechnern zeigen: Gummiringe und andere Dichtungen schließen theoretisch eher dicht ab, als bisher gedacht. Sobald ihre Oberfläche zu mehr als 42 Prozent von dem anliegenden Anschlussstück kontaktiert wird, tritt keine Flüssigkeit mehr aus. Die Ergebnisse wurden in der aktuellen Ausgabe der Physical Review Letters veröffentlicht (10.1103/Physics.5.66).

Dichtungen erfüllen eine wichtige Funktion in allen möglichen Geräten, vom Raumschiff bis zum Wasserhahn. Die geläufigste Form besteht aus einem Gummiring und zwei festen Anschlussteilen. Wie gut Flüssigkeiten zurückgehalten werden, hängt in erster Linie davon ab, wie eng die Dichtung anliegt.


Simulation der Kontaktstellen von Dichtung und Anschlussstück, durch die Lücken zwischen den beiden Oberflächen kann Flüssigkeit ausströmen. Quelle: M. Müser/Universität des Saarlandes

Da alle Oberflächen auf mikroskopischer Ebene uneben und rau sind, liegen Dichtungsring und Anschlussstück nie völlig lückenlos aufeinander. In die kleinen Poren und Kanäle an der Kontaktstelle dringt Flüssigkeit ein, die über nach draußen durchgehende Wege austritt. Verhindern lässt sich das, indem man die Dichtung fester anzieht. Das elastische Gummi wird dann in die mikroskopischen Unebenheiten gepresst, die Kontaktfläche vergrößert sich und verschließt mehr Lücken, sodass weniger Flüssigkeit entweicht.

Mit ihrer Arbeit tragen Wissenschaftler vom Forschungszentrum Jülich und der Universität des Saarlandes dazu bei, besser zu verstehen, was passiert, wenn eine Dichtung leckt. Theoretische Modelle konnten die Zusammenhänge bisher nur unzureichend beschreiben. Ältere Modelle vernachlässigten die Elastizität des Dichtungsmaterials, anders als die aktuelle Theorie von Bo N. J. Persson, einem Mitautor der Studie aus dem Jülicher Peter Grünberg Institut. Diese enthielt allerdings einige nicht bestätigte Annahmen: „Die Vorhersagen waren besser, als sie sein sollten“, berichtet Prof. Martin Müser, Leiter des Lehrstuhls für Materialsimulation der Universität des Saarlandes und der Forschungsgruppe „Computational Materials Physics“ im John von Neumann-Institut für Computing am Forschungszentrum Jülich. „Mit den Simulationen wollten wir die Vorgänge auf mikroskopischer Ebene besser verstehen, als es experimentell möglich ist.“

Überraschenderweise müssen sich demnach nur 42 Prozent der Oberflächen von Dichtung und Anschlussstück direkt berühren, um die Verbindung undurchlässig abzuschließen – und nicht 50 Prozent, wie von bisherigen Theorien vorhergesagt. Grund dafür ist in erster Linie eine präzisere Ermittlung der Kontaktfläche. Die Forscher hatten erstmals die Elastizität des Dichtungsmaterials in die Computersimulationen miteinbezogen. Dabei zeigte sich: Mikroskopisch kleine Erhöhungen der Oberfläche, die in das weiche Gummi gepresst werden, berühren die Dichtung nicht vollständig, sondern lassen weitere kleine Lücken entstehen. Das Ergebnis könnten dazu beitragen, die Durchlässigkeit von alternden Dichtungen besser einzuschätzen. Die Jülicher Forschungsgruppe arbeitet bereits mit einem Unternehmen aus der Medizintechnik zusammen, um die Leckrate von Gummistopfen für Spritzen zu berechnen.

Originalveröffentlichung:
Wolf B. Dapp, Andreas Lücke, Bo N. J. Persson, Martin H. Müser
Self-affine elastic contacts: percolation and leakage
Phys. Rev. Lett. 108, 244301 (2012)
DOI: 10.1103/Physics.5.66
Abstract: http://prl.aps.org/abstract/PRL/v108/i24/e244301

Weitere Informationen:
Pressemitteilung mit Bildmaterial unter
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/12-06-18Dichtungen.html

American Physical Society, Focus Article: Plugging Leaks in Seal Models: http://physics.aps.org/articles/v5/66

Jülich Supercomputing Centre am Forschungszentrum Jülich:
http://www.fz-juelich.de/ias/jsc/DE/Home/home_node.html
Peter Grünberg Institut, Bereich Quanten-Theorie der Materialien am Forschungszentrum Jülich:

http://www.fz-juelich.de/pgi/pgi-1/DE/Home/home_node.html

Lehrstuhl für Materialsimulation an der Universität des Saarlandes: http://www.lms.uni-saarland.de/

Ansprechpartner:
Prof. Dr. Martin Müser
Tel. 02461 61-9095
m.mueser@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 700 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr
19.10.2018 | Brandenburgische Technische Universität Cottbus-Senftenberg

nachricht Nanodiamanten als Photokatalysatoren
18.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics