Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erfindung aus Bremen: mithilfe von CT-Daten binnen Stunden Keramik-Ersatzknochen herstellen

29.09.2010
Mithilfe der Daten aus dem Computertomografen (CT) in wenigen Stunden einen Ersatzknochen aus Keramik herstellen – das ist keine Science-Fiction-Szene, sondern in Bremer Uni-Laboren nun bald möglich.

Mit einer Förderung des Bundesministeriums für Wirtschaft und Technologie (BMWi) und unterstützt von der Dienstleistungsagentur für wissenschaftliche Erfindungen aus Bremen und Nord-West-Niedersachsen InnoWi GmbH bringen die Forscher das neue Verfahren jetzt in Richtung Marktreife.

Die Idee für das neue „Rapid-Prototyping-Verfahren zur Herstellung endkonturnaher Bauteile durch schichtweises Gelieren keramischer Suspensionen“ hatte Dr.-Ing. Dietmar Koch aus dem Fachgebiet Keramische Werkstoffe und Bauteile (Leitung: Professor Dr.-Ing. Kurosch Rezwan) am Fachbereich Produktionstechnik der Universität Bremen. Koch und sein Kollege Dipl.-Ing. Lars Andresen wurden 2003 im Wettbewerb „CAMPUSideen 03“ für das Konzept ausgezeichnet, gemeinsam mit Dipl.-Ing. Lars Henkel ging es dann an die Umsetzung. Inzwischen können sich die Wissenschaftler über die Erteilung sowohl eines deutschen als auch eines europäischen Patentes für ihre Entwicklung freuen.

Die InnoWi hatte die Wissenschaftler bei dem Patentantrag unterstützt, im Rahmen der Förderung durch das SIGNO-Programm (Schutz von Ideen für die gewerbliche Nutzung) des BMWi weiter begleitet, und zudem hat die Patentverwertungsagentur für eine zusätzliche „Weiterentwicklungsförderung“ das Marktpotential der Erfindung bewertet. Damit will das BMWi patentrechtlich geschützte Ideen, deren Verwertungschancen sich mit relativ geringem Aufwand deutlich erhöhen lassen, zum Sprung auf den Markt verhelfen. Nun wurde der von den Forschern gestellte und der InnoWi begleitete Projektantrag in Höhe von 40.000 Euro bewilligt.

Nach dem Erstellen des Prototypen (Rapid Prototyping): einfrieren statt „backen“

„Rapid-Prototyping-Verfahren zur Herstellung keramischer Formkörper nach dem Gefriergelierverfahren“ oder kurz „Rapid Freeze Gelation“ (RFG) nennt sich die Erfindung. Mit dem Verfahren lassen sich in einer „RFG-Anlage“ dreidimensionale Strukturen direkt aus digitalen 3D-Zeichnungen erzeugen. Am Ende des nur wenige Stunden dauernden Prozesses steht ein keramisches Bauteil, dessen Festigkeit in der Regel für Anwendungen wie zum Beispiel in der Medizin als Knochenersatzwerkstoff ausreichend ist. Die Dauer des Prozesses ist abhängig von Größe und Komplexität des zu fertigenden Objektes.

Und so funktioniert das „RFG-Verfahren“: Nach den Vorgaben einer digitalen 3D-Zeichnung und gesteuert durch einen Rechner wird die pastöse Keramik-Rohmasse (Schlicker), durch eine Düse in der RFG-Anlage auf einer gekühlten Plattform gezielt, schichtweise abgelegt und die gewünschte Form aufgebaut. So entsteht nach und nach die Struktur, wie sie der Datensatz zum Beispiel aus einem CT vorgibt. Noch befindet sich das Objekt im so genannten Grünzustand und heißt „Grünling“. Der wird normalerweise in einem nächsten Produktionsschritt gesintert, also für eine gewisse Zeit auf gut eineinhalbtausend Grad erhitzt. Beim Sintern, einem Urformverfahren, werden die einzelnen, im Schlicker enthaltenen Pulverpartikel quasi „zusammengebacken“. Damit erhält das Werkstück die erforderliche Festigkeit. Das neue Verfahren geht hier andere Wege: Statt auf „Backen“ setzten die Bremer Wissenschaftler zur Verfestigung aufs Einfrieren.

„Weil insbesondere beim Sintern komplex geformter Bauteile hohe Schrumpfung und hoher Verzug auftreten können, lässt sich keine ausreichende endkonturgetreue Herstellung sicherstellen“, sagt Koch. „Das wissen alle, die schon einmal getöpfert haben“, erklärt er. Nach dem Brennen sei die Vase plötzlich etwas kleiner, oder der Deckel, der als Grünling noch auf den Topf passte, sei nun verzogen. Das neue Verfahren unterscheide sich von den herkömmlichen nun besonders dadurch, dass beim Schlicker sehr hohe Feststoffgehalte von 73 Volumenprozent eingestellt werden könnten und dessen Fließfähigkeit ohne den Zusatz von Bindemitteln sichergestellt werden könne.

„Damit erreichen wir eine hohe Grünfestigkeit, sodass der erzeugte Körper nicht mehr gesintert werden muss, sondern mit der ‚Rapid Freeze Gelation‘-Technik eine für viele Einsatzmöglichkeiten schon ausreichende Festigkeit erhält. In diesem Fall ist es sogar möglich, direkt bei der Formgebung Proteine oder Mikroorganismen hinzuzugeben, um eine zusätzliche Biofunktionalität der Produkte zu erreichen und sozusagen eine „lebende Keramik“ herzustellen. Und falls das Objekt dann zur weiteren Verfestigung doch noch gesintert wird, ist der Sinterungsschwund wesentlich geringer als bei den heute üblichen Verfahren.“

Biokompatible Keramiken – für Produktion von Knochen, Zähnen, Filtern, Katalysatoren …

Noch erlaubt die RFG-Anlage im Labor unter anderem wegen ihrer recht einfachen Ansteuerung der Achsen nur das Nachbilden eher simpler Geometrien wie Gitterstrukturen. Mit den Fördergeldern kann die Forschergruppe das System nun weiter ausbauen und gemeinsam mit der InnoWi nach Entwicklungspartnern sowie Lizenznehmern suchen. „Wir arbeiten daran, dass wir ausgehend von digitalen 3D-Datensätzen auch komplexere Bauteile erzeugen können“ sagt Koch. „Wir sind da noch lange nicht am Ende mit unseren Forschungen. In der Entwicklung steckt noch ein großes Potenzial. Das wollen wir erschließen, aber die Verbesserung der Anlagentechnik bedeutet für uns noch eine finanzielle Hürde.“

„Ein großes Anwendungsfeld sehen wir in der Herstellung detailgenauer, biokompatibler Keramikstrukturen zum Beispiel als Knochen- oder Zahnersatzmaterial in der Implantatmedizin“, sagt Birgit Funk, Innovationsmangerin von der InnoWi. Der Forschungstrend im Bereich Keramik gehe klar in die Richtung Biomaterialien. Ziele seien hier, die Biokompatibilität und Biofunktionalität von keramischen Implantaten und Knochenersatzmaterialien zu verbessern. „Da bietet die RFG-Anlage gleich zwei Vorteile: Erstens können mit ihr filigrane Strukturen hergestellt werden, die besonders als Knochenersatzmaterial geeignet sind. Und zweitens ist die Porosität des keramischen Werkstoffs beliebig einstellbar.“

(Sabine Nollmann)

Achtung Redaktionen: Weitere druckfähige Fotos finden Sie auch unter http://www.innowi.de/de/service/downloads oder erhalten sie über die Ansprechpartner und über Sabine Nollmann (mail@kontexta.de oder 0170 904 11 67)

Weitere Informationen und Ansprechpartner:

Birgit Funk (Innovationsmanagerin, InnoWi GmbH)
Telefon: 0421 96 007-14, E-Mail: birgit.funk@innowi.de
Dr.-Ing. Dietmar Koch, (Uni Bremen, Fachbereich Produktionstechnik, Keramische Werkstoffe und Bauteile)

Telefon: 0421 218-74 51, E-Mail: dkoch@ceramics.uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.innowi.de
http://www.unitransfer.uni-bremen.de
http://www.ceramics.uni-bremen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics