Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexe Zelluloseobjekte drucken

25.03.2020

Forschende der ETH Zürich und der Empa druckten mit einem Zellulose-Verbundmaterial verschiedene Objekte, deren Zellulosegehalt höher liegt als derjenige von anderen 3D-gedruckten zellulosebasierten Gegenständen. Ein Trick half dabei.

Bäume und andere Pflanzen machen es vor: Sie stellen Zellulose selbst her und bauen daraus komplexe Strukturen mit aussergewöhnlichen mechanischen Eigenschaften.


Diese Wabe aus dem neuartigen Zelluloseverbundmaterial ist filigran und zäh zugleich.

ETH Zürich / Empa / Michael Hausmann

Zellulose ist deshalb für Materialwissenschaftler attraktiv, um nachhaltige Produkte mit speziellen Funktionen herzustellen.

Das Material zu komplexen Strukturen mit hohem Zelluloseanteil zu verarbeiten, fordert Materialwissenschaftler jedoch nach wie vor heraus.

Eine Gruppe von Forschenden der ETH Zürich und der Empa haben nun einen Weg gefunden, Zellulose mittels 3D-Drucker zu verarbeiten, um fast beliebig komplexe Gegenstände mit sehr hohem Zelluloseanteil zu schaffen.

Dazu kombinierten die Forschenden das Direct Ink Writing, eine 3D-Drucktechnik, mit einem nachfolgenden Verdichtungsprozess. Damit gelang es den Materialforschenden, den Zellulosegehalt in den gedruckten Objekten auf einen Volumenanteil von 27 Prozent zu heben, wie sie in der Fachzeitschrift «Advanced Functional Materials» berichteten.

Tinte aus Wasser und Nanozellulose

Die ETH- und Empa-Forschenden sind freilich nicht die ersten, die Zellulose mit dem 3D-Drucker verarbeiten. Mit bisherigen Ansätzen, bei denen ebenfalls zellulosehaltige Druckpaste verwendet wurden, gelang es allerdings nicht, feste Objekte mit einem derart hohen Zelluloseanteil und von solch hoher Komplexität anzufertigen.

Die Druckpaste, die Hausmann und seine Kollegen einsetzen, ist denkbar einfach zusammengesetzt. Sie ist eine Dispersion aus Wasser und wenigen hundert Nanometer grossen Zellulosepartikeln und -fasern. Der Zelluloseanteil liegt zwischen sechs und 14 Prozent des Tintenvolumens.

Lösungsmittelbad verdichtet Zellulose

Der Trick der ETH-Forschenden ist, den Gegenstand nach dem Drucken in ein Bad aus organischen Lösungsmitteln einzubringen. Weil Zellulose organische Lösungsmittel abweist, lagern sich die Zellulosepartikel dicht zusammen.

Dadurch schrumpft das Objekt, was zu einer starken Zunahme der relativen Menge von Zellulosepartikel im Material führt.

In einem weiteren Schritt tauchten die Wissenschaftler den Gegenstand in eine weitere Lösung, welche ein lichtempfindliches Kunststoffmonomer enthielt. Die Monomere füllten beim Verdunsten des Lösungsmittels die Lücken des Zellulosegerüsts.

Um die Monomere in festen Kunststoff zu verwandeln, setzten die Forschenden den Gegenstand UV-Licht aus. So entstand ein Verbundmaterial mit einem Zellulosegehalt von besagten 27 Volumenprozent.

«Der Verdichtungsprozess erlaubte es uns, mit einem sechs bis 14-prozentigen Wasser-Zellulose-Gemisch anzufangen und am Ende ein Verbundmaterialobjekt mit 27 Volumenprozent von Zellulose-Nanokristallen zu erhalten», sagt Hausmann.

Elastizität lässt sich einstellen

Je nach Art des eingesetzten Kunststoffmonomers können die Forschenden die mechanischen Eigenschaften wie Elastizität oder Stärke der Druckgegenstände einstellen. Dies erlaubt es ihnen je nach Bedarf harte oder weiche Teile zu erzeugen.

Mithilfe dieses Vorgehens konnten die Forschenden verschiedene, teils filigrane und trotzdem stabile Verbundmaterialobjekte herstellen, wie etwa eine Flammenskulptur, die nur ein Millimeter dick ist. Die Verdichtung von Gegenständen mit einer Wandstärke von mehr als fünf Millimetern führt allerdings zu Verzerrungen, da sich deren Oberflächen rascher zusammenziehen als deren Inneres.

Faserausrichtung wie bei Holz

Ihre Objekte untersuchten die Forschenden mittels Röntgenanalysen und mechanischen Tests. Dabei zeigte sich, dass sich die Zellulose-Nanokristalle ähnlich ausrichten wie Zellulosefasern in natürlichem Holzmaterialien.

«Das bedeutet, dass wir die Mikrostruktur unserer Druckgegenstände so steuern können, sodass Materialien entstehen, deren Mikrostruktur derjenigen der biologischen Vorbildern wie Holz ähneln», betont Rafael Libanori, Oberassistent in der Gruppe von ETH-Professor André Studart.

Noch sind die gedruckten Stücke klein – Labormassstab eben. Doch mögliche Anwendungen gibt es viele, angefangen bei massgeschneiderten Verpackungen bis hin zu Knorpelersatz-Implantaten für Ohren.

Die Forscher haben denn auch ein Ohr nach menschlichem Vorbild angefertigt. Bis ein solches jedoch in der Klinik eingesetzt werden könnte, braucht es mehr Forschung und klinische Versuche.

An der Drucktechnik könnte auch die Autoindustrie interessiert sein. Japanische Autobauer haben bereits einen Prototyp eines Sportwagens gebaut, dessen Karosserie fast vollständig mit Zellulosebasierten Materialien gefertigt wurde.

Wissenschaftliche Ansprechpartner:

Rafael Libanori, Complex Materials, ETH Zürich, +41 44 633 29 32, rafael.libanori@mat.ethz.ch

Originalpublikation:

Hausmann MK, Siqueira G, Libanori R, Kokkinis D, Neels A, Zimmermann T, Studart AR: Complex‐Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds. Advanced Functional Materials, 9. Dezember 2019. doi: 10.1002/adfm.201904127

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Hygienische und virenfreie Oberflächen: Smartphones schnell und sicher mit Licht desinfizieren
06.04.2020 | Institutsteil Angewandte Systemtechnik (AST) des Fraunhofer IOSB

nachricht Innovative Materialien und Bauelemente für die Terahertz-Elektronik
02.04.2020 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Festkörperphysik: Vorhersage der Quantenphysik experimentell nachgewiesen

07.04.2020 | Physik Astronomie

Wie Serotonin die Kommunikation im Gehirn ausbalanciert

07.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics