Herstellung von hochwertigem synthetischen Graphen für industrielle Anwendungen greifbar nahe

Bild: (v.l.) Luca Banszerus, Professor Christoph Stampfer, Michael Schmitz und Stephan Engels vor dem CVD-Ofen zum Wachsen von Graphen. Foto: Peter Winandy

Graphen besteht aus einer Atomlage, ist sehr flexibel und gleichzeitig mechanisch extrem stabil. Optisch transparent leitet es elektrischen Strom besser als jedes andere Material. Die Kombination dieser Eigenschaften ist einzigartig und so können unter Einsatz des „Wundermaterials“ Graphen technologische Durchbrüche – beispielsweise für Touch-Screens und in der flexiblen Optoelektronik – erreicht werden.

Bislang war die Herstellung von Graphen problematisch: Die britisch-russischen Wis-senschaftler Andre Geim und Konstantin Novoselov nutzten im Jahr 2004 in einem unkonventionellen Experiment Tesafilm, um eine einzige Lage Graphen von einem Stück natürlichen Graphit zu trennen. Die „Tesafilm-Methode“ ist allerdings für eine Massenproduktion vollkommen ungeeignet.

Jetzt ist dem 23-jährigen Luca Banszerus sowie Wissenschaftlern der RWTH Aachen und des Forschungszentrums Jülich ein entscheidender Durchbruch gelungen. Banszerus, der noch im Masterstudiengang Physik an der RWTH studiert, gilt als Ausnahmetalent. Er erhielt bereits mehrere Preise und Auszeichnungen. Auch gewann er 2010 im Wettbewerb „Jugend forscht“, damals arbeitete er schon mit einem Partner an dem Thema Graphen.

Die Forschungsarbeit fand im Rahmen der Jülich Aachen Research Alliance, kurz JARA, unter Leitung von Univ.-Prof. Dr. Christoph Stampfer, Leiter des II. Physikalischen Institutes A der RWTH Aachen, statt. Sie wurde mit Mitteln der Deutschen Forschungsgemeinschaft und aus dem „Flagship Graphene“-Projekt der Europäischen Kommission sowie dem ERC Starting Grant für Christoph Stampfer finanziert. „Die Ergebnisse sind ein bedeutender Fortschritt im Bestreben, die Lücke zwischen wissenschaftlicher Forschung und technologischer Anwendung von Graphen zu schließen“, so Stampfer.

Aktuell publizieren Banszerus und Team unter dem Titel „Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper” im Journal „Science Advances 1, e1500222 (2015)“ die neuartige Herstellungsmethode, mit der synthetisches Graphen von ultra-hoher Qualität gewonnen werden kann.

Die Herstellung beruht auf der chemischen Gasphasenabscheidung, kurz CVD genannt, die Abkürzung für chemical vapor deposition. Dabei wird die Reaktion zwischen der chemischen Verbindung Methan und einer geheizten Kupfer-Oberfläche genutzt, um große und makellose Graphen-Flocken herzustellen. Die CVD-Methode ist zwar skalierbar und kostengünstig. Aber das auf diese Weise synthetisierte Graphen, war lange Zeit vor allem im elektrischen Bereich von geringerer Qualität als natürliches, über die “Tesafilm-Methode” hergestelltes Graphen. Dies ändert sich nun grundlegend.

Das Forscherteam zeigt, dass zwischen dem “Tesafilm-Graphen” und den chemisch synthetisierten Flocken kein Qualitätsunterschied besteht. Vielmehr ist der Transfer des Graphens vom Kupfer auf ein anderes Substrat der kritische Schritt. Bisher wurde Graphen mit einer nass-chemischen Methode transferiert, die das Graphen verunreinigt und aufwellt. Die von Banszerus und Kollegen entwickelte Methode erlaubt erstmals einen trockenen Transfer, der die hohe Qualität des chemisch gewachsenen Graphens beibehält. Zusätzlich kann das Kupfer für die Synthese von Graphen wieder verwendet werden, was Geld und Ressourcen in der Herstellung von Graphen einspart.

Infos:
Univ.-Prof. Dr. Christoph Stampfer
Leiter des II. Physikalischen Institutes, Lehrstuhl A
JARA-FIT (Fundamentals of Future Information Technology)
E-Mail: stampfer@physik.rwth-aachen.de
Telefon: 0241/80-27094

Media Contact

Thomas von Salzen idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.rwth-aachen.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer