Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit einem guten Draht zur Nanoelektronik

02.11.2012
Leitfähigkeitsmessungen an Graphen-Nanobändern liefern Hinweise, wie sich molekulare Leiter optimieren lassen

Die Elektronik der Zukunft könnte mit Molekülen rechnen. Die winzigen Teilchen sollen dann die Aufgaben übernehmen, die heute etwa Siliziumtransistoren erledigen. Einen Nanodraht, durch den dann möglicherweise Strom zwischen molekularen Transistoren oder verschiedenen Bauteilen fließt, präsentieren nun Forscher des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin.


Stromkreis mit Nanokabel: Berliner Max-Planck-Forscher hoben mit der Spitze eines Rastertunnelmikroskops ein Graphenband von einer Goldoberfläche und untersuchten wie die Leitfähigkeit des Kohlenstoffstreifens von seiner Länge abhängt. © Leonhard Grill / Fritz-Haber-Institut der MPG

Die winzige Leiterbahn besteht aus einem schmalen Graphenband, also einem Streifen einer einzigen Lage Kohlenstoff, den die Wissenschaftler in mehreren Schritten aus einem Vorläufer-Molekül erzeugten. Anschließend bestimmten sie in diffizilen Messungen mit einem Rastertunnelmikroskop, wie die Leitfähigkeit des Kohlenstoffstreifens von dessen Länge und der Energie der Elektronen abhängt. Auf diese Weise haben sie mehr darüber erfahren, wie Ladung in Form von Elektronen durch den Nanodraht transportiert wird und wie sich die Leiterbahnen für mögliche Anwendungen in der Nanoelektronik verbessern lassen.

Dünner kann ein Draht nicht sein. Doch die Rekordmaße von Graphendrähten bieten nicht nur neue Möglichkeiten, sie stellen Physiker auch vor einige Herausforderungen. Diese haben Leonhard Grill und seine Mitarbeiter am Berliner Fritz-Haber-Institut der Max-Planck-Gesellschaft nun angenommen. Das begann damit, dass sie – basierend auf ihren eigenen und anderen Arbeiten – vom Reißbrett ein schmales Graphenband herstellten. Zunächst dampften sie molekulare Schnipsel der Streifen auf eine Oberfläche. Die Moleküle waren gerade so mit chemischen Kupplungen versehen, dass sie sich zunächst zu einer langen Kette verbanden und anschließend ein flaches, starres Band bildeten.

Dann aber legten die Forscher um Leonhard Grill mit ihrem eigentlichen Vorhaben los: Sie maßen die Leitfähigkeit eines einzelnen Nanodrahtes, und zwar in Abhängigkeit von seiner Länge. „Auf diese Weise erfahren wir, wie der Ladungstransport in dem Graphen-Nanoband funktioniert“, erklärt Leonhard Grill. Vor allem finden die Forscher so heraus, ob es sich bei Ihrem Nanodraht um einen perfekten Leiter handelt, dessen Leitfähigkeit sich mit der Länge nicht ändert. Ihre Erkenntnisse gewannen die Forscher in einem heiklen Experiment: Sie bestimmten bei verschiedenen Spannungen, das heißt Elektronenenergien, den Stromfluss durch ein einzelnes Graphenband, das die Spitze eines Rastertunnelmikroskops mit einer Goldoberfläche verband, und zwar über unterschiedliche Abstände.

Die Leitfähigkeit von Nanodrähten zu messen, erfordert Fingerspitzengefühl

Zu diesem Zweck zogen sie zunächst den Nanodraht von seiner Unterlage in die Höhe. In etwa so, wie man mit einem feuchten Finger eine Plattpapier aufnimmt, nur das der Griff nach dem Nanodraht ungleich mehr Fingerspitzengefühl erfordert. „Vor allem bei höheren Spannungen zwischen der Spitze und der Goldoberfläche löst sich der Draht leicht ab“, erklärt Matthias Koch, der die Experimente im Rahmen seiner Doktorarbeit vornahm. „Wir beherrschen inzwischen zwar einige experimentelle Tricks, wie wir die Graphenbänder mit der Spitze festhalten können, wir brauchen aber immer noch viele Versuche.“

Die Messungen ergaben nun, dass der Strom durch den Graphendraht nicht mit relativ geringem Widerstand wie durch ein Kupferkabel floss. Vielmehr gelangten die Elektronen über einen quantenmechanischen Prozess durch den Nanodraht: Sie tunnelten durch ihn hindurch. Dieses Tunneln beherrschen nur Quantenteilchen, und sie zeigen es immer dann, wenn ihnen eine Barriere Widerstand leistet, die sie nach der Gesetzen der klassischen Physik nicht überwinden könnten. Nur aufgrund ihrer Quanteneigenschaften finden die Teilchen trotzdem durch die Barriere. Je größer aber die Distanz ist, die Elektronen dabei überwinden müssen, desto weniger schaffen es auf die andere Seite. „Die Leitfähigkeit hängt in dem Nanodraht also stark von dessen Länge ab“, sagt Matthias Koch. Zudem fließt in dem Tunnelprozess insgesamt deutlich weniger Strom als beim Ladungstransport in einem herkömmlichen Leiter.

Der Rand des Graphenstreifens beeinflusst den Ladungstransport

Darüber hinaus zeigten die Wissenschaftler erstmals, wie der Ladungstransport von der Elektronenenergie abhängt. Wenn sie die Elektronenenergie so wählen, dass sie zur Energie der Molekülorbitale passt, dann verbessert sich der Ladungstransport schlagartig. Orbitale sind die Räume, in denen sich in Atomen und Molekülen Elektronen mit jeweils genau definierter Energie aufhalten „Dabei dienen die Molekülorbitale als Kanäle die sich über das ganze Molekül erstrecken und effizienten Ladungstransport ermöglichen“, sagt Leonhard Grill. „Befindet man sich energetisch außerhalb dieser Kanäle, dann schränkt das den Ladungstransport dramatisch ein.“ Dieses Verhalten wurde schon lange vermutet, die Berliner Forscher haben es nun aber erstmals an einem einzelnen Molekül demonstriert.

Für die Physiker stellen die Graphenbänder also interessante Forschungsobjekte dar, für Anwendungen in der Nanoelektronik eignen sie sich aber noch nicht gut. Immerhin weist den Berliner Forschern ein weiterer Befund aus ihren Experimenten einen Weg zu einem perfekten Nanodraht: So hängt die Art und Weise des Elektronentransports davon ab, wie der Rand des Streifens geformt ist. Die Wissenschaftler unterscheiden eine Zickzack- und eine Sesselstruktur. In der Sesselstruktur ordnen sich die Kohlenstoffatome so an, dass ihre Silhouette an eine Reihe von Sitzflächen und Armlehnen erinnert, während sie im Zickzackmuster einem schlichten Auf und Ab folgen.

In einem gebogenen Draht verändert sich die Leitfähigkeit

Damit ein solcher Nanodraht tatsächlich eine perfekte – von der Moleküllänge unabhängige – Leitfähigkeit zeigt, müssen die Wissenschaftler des Fritz-Haber-Instituts jedoch auch ihr Experiment verändern. Wenn nämlich die Spitze des Rastertunnelmikroskops das Graphenband von dessen Unterlage hebt, biegt sich der Streifen leicht. Dadurch verändern sich seine elektronischen Eigenschaften, etwa so wie Wasser durch ein gerades Bachbett ungehindert fließt, während es in engen Schleifen stark verwirbelt wird. „Wir haben Hinweise gefunden, dass wir in einem ungebogenen Graphenband eine herausragende Leitfähigkeit beobachten können“, sagt Leonhard Grill.

Daher wollen die Physiker nun Experimente konzipieren, die Leitfähigkeitsmessungen mit geraden Nanodrähten erlauben. Einfach an einem Graphenband zu messen, das auf einer ebenen Fläche liegt, führt dabei nicht ohne weiteres zum Ziel. „Die Leitfähigkeit des Kohlenstoffstreifens wird in einem solchen Versuchsaufbau von der Unterlage beeinflusst“, erklärt Leonhard Grill. Also sucht seine Gruppe Wege, diese Wechselwirkung zu umgehen. Darüber hinaus wollen die Berliner Wissenschaftler Moleküldrähte mit unterschiedlichen Strukturen und Zusammensetzungen untersuchen – immer mit Blick darauf, Molekülen das Rechnen beizubringen, wie Leonhard Grill erklärt: „Wir wollen mit unserer Arbeit grundlegendes Verständnis derphysikalischen Prozessen in solchen Systemen gewinnen, um letztlich nicht nur den perfekten Nanodraht zu finden, sondern auch andere elektronische Bauteile aus einzelnen Molekülen zu konstruieren.“
Ansprechpartner
Dr. Leonhard Grill
Abteilung für Physikalische Chemie
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Telefon: +49 30 8413-5108
Email: lgr@­fhi-berlin.mpg.de
Originalpublikation
Matthias Koch, Francisco Ample, Christian Joachim und Leonhard Grill
Voltage-dependent conductance of a single graphene nanoribbon
Nature Nanotechnology, 14. Oktober 2012; doi: 10.1038/NNANO.2012.169

Dr. Leonhard Grill | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/6608652

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics