Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Gummimetalle“ ebnen den Weg für neue Anwendungen

01.02.2017

Max-Planck Wissenschaftler entdecken Besonderheit in Kristallstruktur von Titanlegierung

Ein Metall das sich Kaugummi-artig verbiegen lässt und somit den Weg für neue industrielle Anwendungen zum Beispiel in der Luftfahrt eröffnet. Solche „Gummimetalle“ existieren, doch war der Mechanismus hinter diesem einzigartigen Verhalten bisher ungeklärt.


Rasterelektronenmikroskop-Aufnahme der verschiedenen Phasen in der untersuchten "gummiartigen" Titanlegierung.

Jian Zhang, Max-Planck-Institut für Eisenforschung GmbH


Schematische Darstellung der Titanlegierung. Zu sehen ist die Kristallstruktur der verschiedenen Phasen während der Wärmebehandlung.

Jian Zhang, Max-Planck-Institut für Eisenforschung GmbH

Wissenschaftler vom Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf haben einen neuen Phasenübergang in einer Titanlegierung beobachtet, der genau dieses Verhalten erklären könnte. Dabei ist eine Phase eine Kristallstruktur, in der die Atome in einem Metall angeordnet sind.

Die Materialwissenschaftler vom MPIE untersuchten mittels Röntgenlicht die innere Struktur einer speziellen Materialkombination aus Titan, Niob, Tantal und Zirconium. Diese Titanlegierung zeigt bei mechanischen Belastungen ein interessantes Verhalten: „Bei Verformung wird sie nicht, wie sonst bei Metallen üblich, härter oder bricht, sondern verbiegt sich fast schon honigartig. Wissenschaftlich ausgedrückt hat sie eine sehr niedrige elastische Steifigkeit und eine hohe plastische Formbarkeit“, erklärt Dierk Raabe, Direktor am MPIE.

Das macht die Legierung attraktiv für verschiedene industrielle Anwendungen. In der Luftfahrt beispielsweise kann sie als eine Art Crashabsorber verwendet werden. „Wenn eine Flugzeugturbine durch Hagel- oder Vogelschlag beschädigt wird, besteht die Gefahr, dass einzelne Bauteile zersplittern und in der Folge auch den Flugzeugrumpf beschädigen könnten. Wenn Teile der Schutzhülle einer Turbine beispielsweise aus einem solchen ,gum metal‘ bestehen würden, könnten sie umherfliegende Splitter abfangen, da sie durch die Belastung nicht zerstört werden, sondern sich nur verformen“, sagt Raabe

Die Forscher haben mit verschiedenen Untersuchungsmethoden wie Röntgenstrahlung, Transmissionselektronenmikroskopie und Atomsondentomographie die Besonderheiten in der Nanostruktur zeigen können. Titanlegierungen kommen normalerweise in zwei verschiedenen Phasen vor. Bei Raumtemperatur sind die Atome meist in der sogenannten Alpha-Phase angeordnet, bei hohen Temperaturen in der Beta-Phase. Je nach Phase zeigen die Metalle unterschiedliche Eigenschaften. Die Gummimetalle bestehen vor allem aus der Beta-Phase, die in diesen Legierungen auch bei Raumtemperatur stabil ist.

Mittels Röntgenstrahlung im Teilchenbeschleuniger DESY konnten die Wissenschaftler die Kristallstruktur der Legierung während des Übergangs genau untersuchen. „Wenn man eine Probe mit Röntgenstrahlung beschießt, wird die Strahlung durch das Kristallgitter abgelenkt. Dadurch ergibt sich ein bestimmtes Muster, ein sogenanntes Diffraktogramm, aus dem wir dann ableiten können, wie die Atome positioniert sind, also welche Kristallstruktur sie einnehmen“, erklärt DESY-Forscherin Ann-Christin Dippel, die die Untersuchungen mit Röntgenstrahlung an der DESY-Messstation betreut hat.

Die Forscher des MPIE haben so einen neuen Mechanismus beim Phasenübergang entdeckt. Das Team um den Ingenieur Jian Zhang vom MPIE hat eine neue Struktur beobachtet, die bei der Transformation von Beta- zu Alpha-Phase entsteht: die Omega-Phase. Wenn die Beta-Phase von einer hohen Temperatur schnell abgekühlt wird, ändert ein Teil der Atome die Position und geht in die energetisch günstigere Alpha-Phase über. Durch die Bewegung der Atome entsteht eine mechanische Spannung an der Phasengrenze, die verschiedenen Phasen zerren sozusagen aneinander. Wenn diese Spannung einen kritischen Wert übersteigt, entsteht eine neue Anordnung, genannt Omega-Phase.

„Diese neu entdeckte Struktur entsteht nur durch die Scherspannung, die beim Phasenübergang aufgebaut wird, und erleichtert die Umwandlung von Alpha- zu Beta-Phase. Sie kann nur zwischen zwei anderen Phasen bestehen, da sie durch diese stabilisiert wird“, berichtet Raabe. Wenn die Spannung durch die neue Schicht wieder unter den kritischen Wert fällt, entsteht aufs Neue eine Schicht Alpha-Phase, an die sich dann wieder eine Omega-Phase anschließt.

So entsteht eine Mikrostruktur aus vielen, zum Teil atomar schmalen Schichten mit jeweils anderer Struktur. Der Übergang findet auch bei statischen Belastungen statt und ist vollständig umkehrbar. Die Forscher hoffen jetzt, dass die neu entdeckte Struktur dabei helfen könnte, die Eigenschaften des Werkstoffs noch genauer zu verstehen und später neue, verbesserte Varianten der Titanlegierung zu entwickeln.

Das Team um Hauptautor Jian Zhang vom MPIE stellt seine Ergebnisse in der Fachzeitschrift „Nature Communications“ vor. An der Arbeit waren auch die Xi'an-Jiaotong-Universität in China sowie das Massachusetts Institute of Technology in den USA beteiligt.

Originalpublikation:
J. Zhang, C.C. Tasan, M.J. Lai, A-C. Dippel, D. Raabe: Complexion-mediated martensitic phase transformation in Titanium. Nature Communications, 8, 2017; DOI: 10.1038/ncomms14210

Weitere Informationen:

http://www.mpie.de

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Additiv schützt Holzwerkstoffe vor Flammen
14.02.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Maßgeschneiderter Materialmix für dreidimensionale Mikro- und Nanostrukturen
13.02.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mobile World Congress: Bundesamt für Strahlenschutz rät zu Handys mit geringem SAR-Wert

22.02.2019 | Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Zeit atomarer Vorgänge auf der Spur

22.02.2019 | Physik Astronomie

Wie Korallenlarven sesshaft werden

22.02.2019 | Biowissenschaften Chemie

Ökologische Holz-Hybridbauweisen für den Geschossbau

22.02.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics