Gießener Materialwissenschaftler auf der Spur von neuen Hochleistungs-Energiespeichern

Effiziente und schnelle Energiespeicherung wird immer wichtiger, nicht erst seit der Einführung von Hybridautos. Leider dauert bei herkömmlichen Akkus der Lade- und Entladevorgang oft zu lang, während die in Hybridautos bereits verwendeten elektrochemischen Kondensatoren oft nicht genug Energie für lange Wege speichern können.

Gießener Materialwissenschaftler sind jetzt womöglich einer neuen Generation von Energiespeichern auf der Spur, die sich durch eine hohe Leistungs- und Energiedichte sowie lange Lebensdauer auszeichnen. Das geht aus einer aktuellen Veröffentlichung der Forscher in der Fachzeitschrift „Nature Materials“ hervor.

Das Team um Dr. Torsten Brezesinski vom Physikalisch-Chemischen Institut konnte in Zusammenarbeit mit Wissenschaftlern der University of California, Los Angeles, erstmals nachweisen, dass Energiespeicher aus Nano-Materialien leistungsfähiger sind, weil ein Großteil der Ionen an der Oberfläche bleibt – oder sich in die Lücken von Schichtgitter-Materialien setzt – und nicht wie bei herkömmlichen Lithium-Ionen-Akkus vergleichsweise langsam in das Material diffundiert. Bislang war man davon ausgegangen, dass die verbesserten elektrochemischen Eigenschaften der Nano-Materialien ausschließlich auf die kürzeren Wege der Ionen und Elektronen durch das Material zurückzuführen sind.

Am Beispiel von nanoporösen Elektroden aus dem Metalloxid MoO3 konnte jetzt gezeigt werden, dass auf Grund der Schichtgitterstruktur die kapazitiven Anteile an der Ladungsspeicherung um ein Vielfaches höher sind als bei nichtporösem Material. Gleichzeitig findet der Auf- und Entladungsvorgang deutlich schneller statt. Solche nanoporösen Systeme repräsentieren somit eine neue Klasse kapazitiver Materialien, die sehr vielversprechend sind für die Entwicklung von Hochleistungs-Energiespeichern der Zukunft.

Veröffentlichung:
Torsten Brezesinski, John Wang, Sarah H. Tolbert & Bruce Dunn: Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. „Nature Materials“, online veröffentlicht am 10. Januar 2010.
Kontakt:
Dr. Torsten Brezesinski
Physikalisch-Chemisches Institut
Telefon: 0641 99-34591
E-Mail: torsten.brezesinski@phys.chemie.uni-giessen.de

Media Contact

Caroline Link idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer