Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenflüsse

17.03.2016

Üblicherweise ist die Bewegung von Elektronen in einem realen Material ziemlich verschieden vom Wasserstrom in einem Fluss. Doch in außergewöhnlichen Materialien, wie dem Metalloxid PdCoO2, können solche „Elektronenflüsse” existieren, wie theoretisch vor mehr als fünfzig Jahren vorhergesagt und jetzt von Wissenschaftlern des MPI CPfS demonstriert.

Schon als die Elektrizität entdeckt wurde, hatten die Wissenschaftler ein Bild aus dem Alltag vor Augen, dass Elektronen in einem Metall wie Wasser in einem Rohr fließen.


Einer der erzeugten „Elektronenflüsse": Die Strömung erfolgt entlang des lila-Kanals und wird mit Instrumenten untersucht, die mit den farbigen Teilen der Vorrichtung verbunden sind.

MPI CPfS

Obwohl wir dieses Bild noch immer in der Sprache verwenden (ein elektrischer „Strom“ „fließt“), wissen wir mittlerweile, dass diese Vorstellung eigentlich nicht zutrifft: Die Bewegung der Elektronen wird ständig dadurch gestört, dass sie mit den Atomen zusammenprallen, aus denen das Metall besteht. Der Ablauf dieser elektronischen Fließprozesse ist deshalb nicht annähernd so aufregend wie die von Flüssigkeiten, die wir als Wellen, Wirbel und Turbulenzen beobachten können, wenn wir an einem Fluss sitzen.

Damit "Elektronenflüsse" existieren können, muss man außergewöhnliche Materialien finden, in denen die Kollisionen der Elektronen mit den Atomen tausendfach schwächer als üblich sind. Obwohl diese Möglichkeit - bekannt unter dem Begriff "elektronische Hydrodynamik" - vor mehr als fünfzig Jahren theoretisch vorhergesagt wurde, konnte dieses ungewöhnliche Verhalten erst jetzt in einem Material beobachtet werden.

In der jüngsten Ausgabe der Zeitschrift Science (Band 351, 4. März 2016; siehe auch den “Perspectives” Artikel von J. Zaanen), berichten gleichzeitig drei Artikel von experimentellen Erfolgen: Die Gruppen von Philip Kim in Harvard und Andre Geim in Manchester arbeiteten mit Graphen, der Beitrag der Gruppen von Andrew Mackenzie und Philip Moll vom Max-Planck-Institut für Chemische Physik fester Stoffe Dresden basiert jedoch auf einem Metalloxid.

Das Material unserer Wahl, PdCoO2, weist eine erstaunlich hohe elektrische Leitfähigkeit auf. Diese hohe Leitfähigkeit ist ein Indiz für eine sehr geringe Störung der Elektronen durch die Atome in diesem Material und hat uns motiviert, hier nach hydrodynamischen Effekten zu suchen. Dabei haben wir nach einem Phänomen gesucht, das jeder kennt, der in Flüssen baden war: Flüsse fließen am Ufer langsamer als in der Mitte des Flusses. Dieser Effekt entsteht durch den Zusammenstoß der Wassermoleküle mit dem Ufer, dem Rand des Flusses.

Auch „Elektronenflüsse“ sollten durch diese Zusammenstöße mit dem „Ufer“, also der Oberfläche eines Drahts, ähnlich beeinträchtigt werden. Um deren Anwesenheit aufzudecken, frästen wir sukzessive engere Kanäle in das Material und untersuchten, wie leicht die Elektronen durch sie fließen konnten.

Durch Vergleich unserer Ergebnisse mit theoretischen Modellen hydrodynamischer Effekte konnten wir zeigen, dass wir in der Tat die lange vorhergesagten Elektronenflüsse erzeugen können. Unsere Erkenntnisse setzen neue Maßstäbe bei der Erforschung, wie sich Elektronen in ultrareinen Materialien verhalten. Die in der Strömung des Wassers vorhandene Vielfalt könnte auch für den Fluss von Elektronen beobachtbar sein, und etwas von dieser Reichhaltigkeit könnte eines Tages zur Erfindung von neuen elektronischen Geräten führen. Wir hoffen, eine führende Rolle bei diesen Entwicklungen zu spielen.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen. Gemeinsam untersuchen Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker mit modernsten Instrumenten und Methoden, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.

Das MPI CPfS ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Weitere Informationen:

http://www.cpfs.mpg.de/2664354/20160310

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Material mit magnetischem Formgedächtnis
04.06.2019 | Paul Scherrer Institut (PSI)

nachricht Weltraumschrott verringern: HZG-Wissenschaftler helfen beim Sauberhalten
30.05.2019 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics