Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Echsen trinken: Bionische Oberflächen für technische Bauteile

29.10.2012
Texanische Krötenechsen und Australische Dornteufel sind in extremer Trockenheit zuhause.

Um in ihrer unwirtlichen Heimat zu überleben, nutzen sie einen besonderen Trick der Natur: Mit ihrer Schuppenstruktur können sie kleinste Wassermengen aus der Umgebung sammeln und ihre Haut damit benetzen. Feine Kapillaren in ihrer Oberfläche transportieren dann das Wasser zum Maul der Echsen.


Schuppenstruktur der Texanischen Krötenechse im Rasterelektronenmikroskop

Bildquelle: P. Comanns, Institut für Biologie II der RWTH Aachen

Die Strukturen der Echsenhaut auf technische Bauteile zu übertragen und damit die Benetzung mit Schmierstoffen und anderen Fluiden zu verbessern, ist jetzt Ziel im BMBF-geförderten Forschungsprojekt »BioLas.exe« des Instituts für Biologie II der RWTH Aachen im Lehr- und Forschungsgebiet Zelluläre Neurobionik und des Fraunhofer-Instituts für Produktionstechnologie IPT.

Das Projekt »BioLas.exe« ist eine interdisziplinäre Kooperation zwischen Biologen und Produktionstechnikern. Die Partner wollen in den kommenden drei Jahren die Schuppenstrukturen der feuchtigkeitserntenden Echsen untersuchen und diese mit dem Verfahren des Laserstrahlstrukturierens auf Bauteilen, zum Beispiel aus Stahl oder Messing, nachbilden. Die bionischen Oberflächen können etwa auf Lagern, Wellen oder Dichtungsringen dazu dienen, Flüssigkeiten wie Öle, Schmierstoffe oder Kühlmittel besser zu verteilen und den Verschleiß von Pumpen und Motoren zu verringern.

Aufgabe der Biologen ist es dafür zunächst, die Strukturen und Kapillareffekte der Echsenhaut zu untersuchen und geeignete Gestaltungsmuster für den Einsatz in technischen Systemen zu ermitteln. Die bionischen Strukturen, die die Echsenhaut zum Vorbild nehmen, flexibel und präzise in verschiedene Werkstoffe einzubringen, ist die Aufgabe der Produktionstechniker. Hier setzen die Fraunhofer-Forscher auf das Verfahren des Laserstrahlstrukturierens. Dabei trägt ein Laser in der Bearbeitungsmaschine gezielt Werkstoff von der Bauteiloberfläche ab und kann selbst komplex geformte Oberflächen mit nahezu beliebigen Strukturen versehen. Je nach Strukturmuster lässt sich so die Benetzungsfähigkeit der Oberflächen gezielt einstellen.

BioLas.exe – Software überträgt Strukturen auf frei geformte Oberflächen

Eine besondere Herausforderung wird es sein, die winzigen bionischen Strukturen auf die komplex geformten Bauteiloberflächen zu übertragen: Größe, Geometrie sowie Nano- und Mikrotopografien müssen exakt eingehalten werden, um die gewünschte Funktion sicherzustellen. Die Projektpartner setzen dafür auf eine selbst entwickelte Software, die die Strukturen digital auf die frei geformten Oberflächen überträgt und das Benetzungsverhalten auf dem Bauteil simuliert. Ziel soll es sein, dass die Struktur sich eigenständig und "intelligent" über die komplette Oberfläche des Bauteilmodells ausbreitet. Auch ein Katalog an geeigneten Strukturen, die durch die Biologen geprüft und von den Produktionstechnikern erprobt sind, wird Bestandteil der Software werden.

Potenzial für die industrielle Anwendung

Anhand ausgewählter Anwendungen wollen das Institut für Biologie und das Fraunhofer IPT die Marktfähigkeit des Verfahrens und sein Potenzial für die industrielle Anwendung nachweisen. Fundierte Kosten-Nutzen-Betrachtungen mit Blick auf konkrete Produkte sollen sicherstellen, dass das Verfahren bis zur Marktreife geführt werden kann.

Das Forschungsprojekt »BioLas.exe« startet im November 2012. Es wird für eine Laufzeit von drei Jahren vom Bundesministerium für Bildung und Forschung im VIP-Programm (Validierung des Innovationspotentials wissenschaftlicher Forschung) gefördert und durch die VDI/VDE Innovation + Technik GmbH, Berlin, als Projektträger betreut.

Feierliche Übergabe des Bewilligungsbescheids zum Projekt »BioLas.exe«

Zum offiziellen Start des Projekts »BioLas.exe« wird am Mittwoch, den 31. Oktober 2012 um 11.15 Uhr der Bewilligungsbescheid durch den Parlamentarischen Staatssekretär Thomas Rachel im Beisein von MdB Dr. Rudolf Henke (CDU) an die Projektpartner symbolisch übergeben. Im Rahmen einer kleinen Feierstunde erläutern die Projektpartner kurz das Projekt und führen die Laseranlagen, die im Projekt zum Einsatz kommen werden, in der Maschinenhalle des Fraunhofer IPT vor.

Vertreter von Presse und Medien sind herzlich eingeladen, an der Feierstunde teilzunehmen!

Bitte melden Sie sich unter presse@ipt.fraunhofer.de an, damit wir planen können.

Kontakt

Dipl.-Biol. Philipp Comanns
RWTH Aachen, Institut für Biologie II
Lukasstraße 1
52070 Aachen
Telefon +49 241 80-27779
philipp.comanns@rwth-aachen.de
www.znb.rwth-aachen.de

Dipl.-Ing. Kai Winands
Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstraße 17
52074 Aachen
Telefon +49 241 8904-421
kai.winands@ipt.fraunhofer.de
www.ipt.fraunhofer.de

Susanne Krause | Fraunhofer-Institut
Weitere Informationen:
http://www.ipt.fraunhofer.de
http://www.znb.rwth-aachen.de/
http://www.beilstein-journals.org/bjnano/single/articleFullText.htm?publicId=2190-4286-2-24

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Hitzeschilde für sparsame Flugzeuge
18.09.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Turbine aus dem 3D-Drucker
18.09.2019 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics