Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synchrotronstrahlung enthüllt "Strickmuster" ultradünner Schichten

16.03.2004


Max-Planck-Materialwissenschaftler haben erstmals die atomare Struktur ultradünner Aluminiumoxydschichten entschlüsselt / Große Relevanz für neue Technologien


Abb. 1: Komplexes Beugungsbild niederenergetischer Elektronen nach Oxidation von NiAl(110). Die mit dieser und anderen Methoden gewonnenen Informationen reichen nicht aus, um die Struktur der entstehenden, nur zwei Atomlagen dicken Schichten aus Alumuniumoxyd präzise zu beschreiben.
Bild: Max-Planck-Institut für Metallforschung


Abb. 2 (oben): Seitenansicht einer Aluminiumoxydschicht (Al2O3) auf der Legierung Nickelaluminium NiAl(110). Die grünen bzw. großen roten Kugeln sind Nickel- bzw. Aluminium-Atome des NiAl-Substrats, die blauen Kugeln Sauerstoffionen, und die kleinen orangen und roten Kugeln verdeutlichen Aluminium-Ionen der Oxidschicht.

Abb. 3 (unten): Draufsicht auf eine Zwillingskorngrenze in einer ultradünnen Aluminiumoxidschicht auf der intermetallischen Legierung NiAl(110). Die Einheitszellen der Oxydschicht bzw. des NiAl-Substrats sind als großes bzw. kleines Rechteck eingezeichnet.
Bilder: Max-Planck-Institut für Metallforschung



Aluminiumoxyd, ein scheinbar unwichtiges weißes Pulver, könnte als ultradünne keramische Schicht eine Schlüsselrolle bei Hightech-Anwendungen spielen, die vom Wärme- und Korrosionsschutz in der Luft- und Raumfahrt über Hochleistungskatalysatoren in der Chemie bis hin zu neuartigen Computerspeichern reichen. Voraussetzung dafür ist aber die genaue Kenntnis der atomaren Schichtstruktur, die man bis heute nicht aufklären konnte. Doch jetzt ist es Andreas Stierle und seinen Kollegen am Max-Planck-Institut für Metallforschung in Stuttgart erstmals gelungen, die Struktur kristalliner, nur einen halben Nanometer dicker Aluminiumoxyd-Schichten zu entschlüsseln (Science, 12. März 2004). Der Durchbruch gelang nach vier Jahren intensiver Forschung mit hochbrillanter Synchrotronstrahlung am Deutschen Elektronen-Synchrotron (DESY) in Hamburg und an der Europäischen Synchrotron-Strahlungsquelle (ESRF) in Grenoble, Frankreich. Damit können Probleme, die dieses Material noch im Wege stehen, gezielter untersucht und behoben werden.



Ultradünne Schichten aus Aluminiumoxyd erzeugt man durch thermische Oxidation eines Nickelaluminium-Einkristalls einer bestimmten Orientierung Die Schichten bestehen aus lediglich zwei Atomlagen Sauerstoff- und Aluminiumionen, die gegenüber der Volumenstruktur eine stark verzerrte Konstellation einnehmen: Die Schicht wird durch das Substrat stark verzerrt, ähnlich einem Strickmuster, an dem man zieht. Trotz jahrelanger intensiver Forschungen war man bisher nicht in der Lage, die atomare Struktur dieser ultradünnen Schichten sowie ihre Bindung auf Metallunterlagen (Substrat) zu entschlüsseln. Doch erst diese Kenntnisse ermöglichen es, auf ihre Eigenschaften und speziell auf ihr Haftungsverhalten auf einer (metallischen) Unterlage zu schließen.

Vier Jahre lang haben die Forscher des Max-Planck-Instituts für Metallforschung an der Entschlüsselung dieser Struktur gearbeitet. Das war deshalb so schwierig, weil es für Aluminiumoxyd mehr als ein Dutzend mögliche Strukturvarianten gibt. Die Schichtstruktur zu simulieren, übersteigt die Rechenkapazität selbst der modernsten Rechner. Zudem braucht man weitergehende Informationen, als traditionelle Methoden der Oberflächenanalyse - wie die Rastertunnelmikroskopie oder die Beugung niederenergetischer Elektronen (LEED) - liefern können. Andreas Stierle, einer an der Strukturaufklärung beteiligten Max-Planck-Wissenschaftler, betont: "Nur mit hochbrillanter Synchrotonstrahlung ist man derzeit den Anforderungen gewachsen, derart komplexe Materialstrukturen aufklären zu können. Diese laserartig fokussierte Röntgenstrahlung ermöglicht es, sowohl die Oberfläche und den inneren Aufbaus der Schicht als auch ihre Grenzfläche zur Unterlage zu entschlüsseln."

In aufwändigen Messungen, durchgeführt am Deutschen Elektronensynchrotron (DESY) in Hamburg und an der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble, Frankreich, stellten die Forscher schließlich fest, dass die ultradünnen Schichten eine dem k-Aluminiumoxyd ähnliche Struktur aufweisen. Darüber hinaus zeigte das atomare "Strickmuster" der Schicht, dass einige Sauerstoff-Ionen (Abbildung 2, gelb markiert) - wie die Zähne eines "Reißverschlusses" - für eine regelmäßige Kopplung der Schicht auf der Unterlage sorgen. Die Wechselwirkungen der Schicht mit dem Substrat bedingen - in Verbindung mit den verzerrten Lagen - die hohe Stabilität der Aluminiumoxyd-Struktur.

Zudem wurde deutlich, dass so genannte Domänen-Strukturen einen entscheidenden Einfluss auf die funktionellen Eigenschaften solcher Schichten haben und damit künftige Anwendungen wesentlich beeinflussen. Abbildung 3 zeigt das Modell einer so genannten Zwillingskorngrenze. Diese Domänen beeinflussen beispielsweise, auf welche Weise Metallpartikel auf der Schichtoberfläche anwachsen können - wichtig zum Beispiel für Träger neuer Katalysatoren oder für die elektronischen Eigenschaften solcher Schichten.

Aus der jetzt aufgeklärten Struktur können Materialwissenschaftler und -entwickler von der Natur lernen: Dank der genauen Kenntnis solcher sich selbst organisierender Strukturen dünner Schichten kann man zum einen besser vorhersagen, wie sich solche Schichten in konkreten Anwendungen verhalten und zum anderen Materialien und Strukturen mit gewünschten Eigenschaften gezielter herstellen. Ultradünne Schichten aus Aluminiumoxyd könnten als hochtemperaturbeständige keramische Schichten für den Korrosionsschutz von Metalllegierungen eingesetzt werden, zum Beispiel in neuen Flugzeugturbinen oder in Raketenmotoren. Auch gelten diese Schichten als eines der am erfolgversprechendsten Ausgangssysteme für neue Modellkatalysatoren, die man für eine Chemie ohne unerwünschte oder schädliche Nebenprodukte benötigt. Darüber hinaus bieten ultradünne Schichten aus Aluminiumoxid auch Anwendungspotenzial für neuartige Permanent-Speichersysteme in der Computertechnik.

Originalveröffentlichung:

Stierle, F. Renner, R. Streitel, H. Dosch
X-ray Diffraction Study

Weitere Informationen erhalten Sie von:

Dr. Andreas Stierle
Max-Planck-Institut für Metallforschung, Stuttgart
Tel.: 0711 689-1842
Fax: 0711 689-1902
E-Mail: stierle@mf.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics