Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobearbeitung mit großer Wirkung: Das LZH auf der Hannover Messe Industrie

18.04.2001


Das Laser Zentrum Hannover e.V. präsentiert neue Forschungsergebnisseaus dem Bereich der Mikrobearbeitung auf der Hannover Messe Industrie.

Im Zuge der zunehmenden Miniaturisierung in allen technischen Bereichen legt das Laser Zentrum Hannover e.V. (LZH) auf der diesjährigen Hannover Messe Industrie den Schwerpunkt auf Mikromaterialbearbeitung. Auf dem Stand wird u. a. MIPRO - eine laser-basierte Anlage zur schnellen und flexiblen Herstellung von Mikro-Prototypen durch Stereolithographieverfahren oder selektives Laserstrahlsintern - vorgestellt. Dank der Verwendung hochpräziser Komponenten und der Entwicklung neuartiger Rohmaterialien ist es mit MIPRO erstmals möglich, Rapid-Prototyping-Verfahren für Bauteile im Mikrometerbereich einzusetzen.

Das Anwendungspotential der verschiedenen Lasertypen im Bereich der Mikromaterialbearbeitung beschränkt sich nicht "nur" auf die Herstellung von Prototypen. Besonders hervorzuheben sind neueste Entwicklungen im Bereich des Mikrotrennens, -bohrens und -strukturierens sprödharter Werkstoffe. Hierbei führt der Einsatz von neuartigen Strahlquellen, welche sich durch Wellenlängen im VUV-Bereich und ultrakurze Pulsdauern auszeichnen, zu innovativen Entwicklungen. Somit ergeben sich besonders für die Silizium-, PTFE- und Quarzglasbearbeitung neuartige Anwendungsbereiche. Anhand von verschiedenen Exponaten zeigt das LZH die vielfältigen Einsatzgebiete von lasergefertigten Mikrobauteilen.

Herstellung von Implantaten mit dem Femtosekundenlaser
Beispielhaft für das Potential der Lasermikrobearbeitung im LifeScience-Bereich stellt das LZH auf der Industriemesse intravaskuläre Gefäßwandstützen (sog. Stents) aus organischen Polymeren vor, die durch Mikrostrukturierung mit Femtosekunden-Laserstrahlung hergestellt wurden. Im Gegensatz zu konventionellen Verfahren verursacht der fs-Laser keinerlei Beschädigungen an thermisch hochsensiblen organischen Werkstoffen. Der Grund hierfür sind die extrem kurzen Pulsdauern (10 hoch -15 s) dieses Lasertyps, durch die eine Belastung des Werkstoffs während des Fertigungsprozesses vermieden wird.

Zeit- und Kostenersparnis bei der Siliziumbearbeitung


In der Mikrosystemtechnik bietet der fs-Laser eine zeit- und kostensparende Alternative zur photolithographischen Bearbeitung von Silizium. Fertigungsprozesse bei der Siliziumbearbeitung wie z.B. Abtragen, Bohren und Schneiden können mit fs-Lasern schnell und mit hoher Qualität durchgeführt werden.
So zeichnen sich beispielsweise die mit einem fs-Titan:Saphir-Laser erzeugten Durchgangsbohrungen durch eine besonders hohe Qualität auf der Strahlaustrittseite und sehr glatte Bohrungswände aus. Unerwünschte Nebeneffekte wie Mikrorisse, Schmelzränder oder Ablagerungen treten hierbei nicht auf.

Mikrostrukturierung von Teflon und Quarzglas
Durch Einsatz eines F2-Excimer-Lasers (l = 157 nm) in Kombination mit einem am LZH entwickelten Verfahren zur Herstellung dreidimensionaler Konturen für Mikrobauteile können selbst Quarzglas und Teflonâ mit Mikrometerauflösung bearbeitet werden. Dieses Verfahren leistet damit einen Beitrag zur fortschreitenden Miniaturisierung in der Mikrosystem- und Medizintechnik, da beide Werkstoffe in diesen Bereichen eine große Rolle spielen.

Fügen auf Mikrometerebene: 3D-MIDs


Anhand von sogenannten 3D-MIDs zeigt das LZH, dass der Laser auch für Mikro-Fügeverfahren ein geeignetes Werkzeug ist. MIDs (Molded Interconnect Device) sind Baugruppen, die komplexe mechanische und integrierte elektronische Komponenten auf engstem Raum vereinigen. Aufgrund der geringen Abmessungen und des Einsatzes von Kompositwerkstoffen ist die Anwendung konventioneller Fügeverfahren hierbei jedoch problematisch. Abhilfe schaffen die selektiven Fügeverfahren Laserstrahl-Mikroschweißen und -löten mit denen selbst an schwer zugänglichen Stellen thermisch hochbelastbare Fügeverbindungen hergestellt werden können. Vorteilhaft ist zudem, dass dank der kleinen Wechselwirkungszone auch Substratmaterialien gefügt werden können, die den bei konventionellen Verfahren auftretenden Temperaturen nicht standhalten würden.

Die genannten Anwendungen sowie eine Anlagentechnik zum stereolithographischen Rapid Prototyping mikrotechnischer Bauteile präsentieren wir auf unserem Messestand in Halle 7, "Mikrosystemtechnik, Sensorik und Lasertechnik", Stand D14.

Das Laser Zentrum Hannover e.V. (LZH) ist eine durch Mittel des niedersächsischen Ministeriums für Wirtschaft, Technologie und Verkehr unterstützte Forschungs- und Entwicklungseinrichtung auf dem Gebiet der Lasertechnik.

Für mehr Information:
Laser Zentrum Hannover e.V.
Herr Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: bt@lzh.de
http://www.lzh.de

Michael Botts | idw

Weitere Berichte zu: LZH MIPRO Mikrobauteil Mikrobearbeitung Miniaturisierung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Destabilisierung macht Holz stabiler - Das Holz-Paradoxon
12.11.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Laser erzeugt topologischen Zustand in Graphen
06.11.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics