Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtsignale in Glasfasern verstärken

24.05.2000


Glaschemiker der Uni Jena entwickeln Phasenverstärker für die Optoelektronik

Jena (24.05.00) Die Daten, die heutzutage beim Telefonieren oder Internetsurfen als Lichtimpulse durch Glasfaserkabel gesandt werden, müssen zwischen den Kontinenten immer wieder verstärkt werden. Die Lichtinformationen gelangen dabei durch die Glasfaser zu einer Photozelle, werden elektronisch verstärkt und zu einem Laser geleitet, um wiederum in der Glasfaser zu verschwinden - bis sie in der nächsten elektronischen Einheit erneut verstärkt werden.

"Schöner wäre es, ein optisches Bauelement zu haben, das als Verstärker funktioniert", erklärt Prof. Dr. Christian Rüssel. An einer solchen Entwicklung ist Rüssels Institut für Glaschemie der Friedrich-Schiller-Universität Jena beteiligt. Gemeinsam mit italienischen Firmen, z. B. dem Telekommunikationsunternehmen CSELT, sowie Wissenschaftlern der Universitäten in Southampton (England) und Parma (Italien) wollen die Jenaer Glaschemiker einen entsprechenden Verstärker aus Glas entwickeln. Die Europäische Union fördert das Verbundprojekt für drei Jahre mit insgesamt zwei Millionen Euro, wovon 340.000 Euro nach Jena fliessen.

Der neue Phasenverstärker "soll das Licht verstärken, ohne dass man den Umweg über die Elektronik gehen muss", erläutert Prof. Rüssel das Prinzip. Der Impuls bleibt im optischen System und wird dort verstärkt. Vorteile gegenüber der herkömmlichen Methode: Ein auf Optik beruhendes System ist weniger aufwändig und weniger störanfällig, außerdem arbeitet es effizienter.

Um den ’gläsernen Verstärker’ bauen zu können, muss eine Hülse aus einem Spezialglas in ein anderes Glasrohr eingesetzt werden, das das spezifische Laserglas vor mechanischen oder chemischen Störungen bewahrt - wie ein hohler Korken, der vom Flaschenhals geschützt wird. Für den ’Korken’, den eigentlichen Verstärker, wollen die Jenaer Forscher Gläser auf der Basis von Erbium und Tellurdioxid (TeO2) einsetzen. Das Material mit einem hohen Brechungsindex ist zwar schwierig herzustellen, doch am Jenaer Institut existieren langjährige Erfahrungen in der Produktion und Verarbeitung des Laserglases. Erbium ist die ’aktive’ Komponente des Laserglases, ’eingebettet’ in Tellurdioxid sollte es optimale Verstärkereigenschaften besitzen, beschreibt Prof. Rüssel die Vorteile des Materials.

Dank der Kooperation von Wirtschaft und Wissenschaft erwartet der Jenaer Glaschemiker, dass zum Projektende bereits eine industrielle Produktion des gläsernen Phasenverstärkers beginnen kann - und Telefonate rund um die Welt durch ’gläserne Verstärker’ aus Jena unterstützt werden.

Ansprechpartner:
Prof. Dr. Christian Rüssel
Institut für Glaschemie der Universität Jena
Fraunhoferstr. 6
07743 Jena
Tel.: 03641/948501
Fax: 03641/948502
E-Mail: ccr@rz.uni-jena.de

Friedrich-Schiller-Universität
Referat Öffentlichkeitsarbeit
Axel Burchardt M. A.
Fürstengraben 1
07743 Jena
Tel.: 03641/931041
Fax: 03641/931042
E-Mail: hab@sokrates.verwaltung.uni-jena.de

Axel Burchardt |

Weitere Berichte zu: Erbium Glasfaser Phasenverstärker Verstärker

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Material mit magnetischem Formgedächtnis
04.06.2019 | Paul Scherrer Institut (PSI)

nachricht Weltraumschrott verringern: HZG-Wissenschaftler helfen beim Sauberhalten
30.05.2019 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Weizensorten bewähren sich auch unter widrigen Anbaubedingungen

17.06.2019 | Agrar- Forstwissenschaften

Inventur in der Synapse

17.06.2019 | Biowissenschaften Chemie

Zellbiologie - Qualitätskontrolle für Mitochondrien

17.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics