Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtsignale in Glasfasern verstärken

24.05.2000


Glaschemiker der Uni Jena entwickeln Phasenverstärker für die Optoelektronik

Jena (24.05.00) Die Daten, die heutzutage beim Telefonieren oder Internetsurfen als Lichtimpulse durch Glasfaserkabel gesandt werden, müssen zwischen den Kontinenten immer wieder verstärkt werden. Die Lichtinformationen gelangen dabei durch die Glasfaser zu einer Photozelle, werden elektronisch verstärkt und zu einem Laser geleitet, um wiederum in der Glasfaser zu verschwinden - bis sie in der nächsten elektronischen Einheit erneut verstärkt werden.

"Schöner wäre es, ein optisches Bauelement zu haben, das als Verstärker funktioniert", erklärt Prof. Dr. Christian Rüssel. An einer solchen Entwicklung ist Rüssels Institut für Glaschemie der Friedrich-Schiller-Universität Jena beteiligt. Gemeinsam mit italienischen Firmen, z. B. dem Telekommunikationsunternehmen CSELT, sowie Wissenschaftlern der Universitäten in Southampton (England) und Parma (Italien) wollen die Jenaer Glaschemiker einen entsprechenden Verstärker aus Glas entwickeln. Die Europäische Union fördert das Verbundprojekt für drei Jahre mit insgesamt zwei Millionen Euro, wovon 340.000 Euro nach Jena fliessen.

Der neue Phasenverstärker "soll das Licht verstärken, ohne dass man den Umweg über die Elektronik gehen muss", erläutert Prof. Rüssel das Prinzip. Der Impuls bleibt im optischen System und wird dort verstärkt. Vorteile gegenüber der herkömmlichen Methode: Ein auf Optik beruhendes System ist weniger aufwändig und weniger störanfällig, außerdem arbeitet es effizienter.

Um den ’gläsernen Verstärker’ bauen zu können, muss eine Hülse aus einem Spezialglas in ein anderes Glasrohr eingesetzt werden, das das spezifische Laserglas vor mechanischen oder chemischen Störungen bewahrt - wie ein hohler Korken, der vom Flaschenhals geschützt wird. Für den ’Korken’, den eigentlichen Verstärker, wollen die Jenaer Forscher Gläser auf der Basis von Erbium und Tellurdioxid (TeO2) einsetzen. Das Material mit einem hohen Brechungsindex ist zwar schwierig herzustellen, doch am Jenaer Institut existieren langjährige Erfahrungen in der Produktion und Verarbeitung des Laserglases. Erbium ist die ’aktive’ Komponente des Laserglases, ’eingebettet’ in Tellurdioxid sollte es optimale Verstärkereigenschaften besitzen, beschreibt Prof. Rüssel die Vorteile des Materials.

Dank der Kooperation von Wirtschaft und Wissenschaft erwartet der Jenaer Glaschemiker, dass zum Projektende bereits eine industrielle Produktion des gläsernen Phasenverstärkers beginnen kann - und Telefonate rund um die Welt durch ’gläserne Verstärker’ aus Jena unterstützt werden.

Ansprechpartner:
Prof. Dr. Christian Rüssel
Institut für Glaschemie der Universität Jena
Fraunhoferstr. 6
07743 Jena
Tel.: 03641/948501
Fax: 03641/948502
E-Mail: ccr@rz.uni-jena.de

Friedrich-Schiller-Universität
Referat Öffentlichkeitsarbeit
Axel Burchardt M. A.
Fürstengraben 1
07743 Jena
Tel.: 03641/931041
Fax: 03641/931042
E-Mail: hab@sokrates.verwaltung.uni-jena.de

Axel Burchardt |

Weitere Berichte zu: Erbium Glasfaser Phasenverstärker Verstärker

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Neue Simulation-Experiment-Kombination erlaubt tiefere Einblicke in ultraschnelle lichtinduzierte Prozesse
13.02.2020 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics