Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Spitzenwerte bei Supraleitern für die Energietechnik

27.10.2000


Das Institut für Festkörper und Werkstoffforschung Dresden und die THEVA GmbH München präsentieren neue Spitzenwerte der kritischen Stromdichte bei supraleitenden Bändern für die Energietechnik: 1,3 Megaampere pro Quadratzentimeter auf längeren Bändern mit einem für die industrielle Anwendung geeigneten Verfahren


Supraleitung - das ist Stromfluss ohne elektrischen Widerstand. Bei Temperaturen nahe dem absoluten Nullpunkt (-273 °C) ist das für Physiker nichts Besonderes. Inzwischen gibt es auch Materialien, die bereits bei Temperaturen des flüssigen Stickstoffs (-196°C) supraleitend sind. Das verringert den technischen Aufwand der Kühlung und macht Supraleiter für praktische Anwendungen immer interessanter. Am Institut für Festkörper- und Werkstoffforschung Dresden (IFW) wird auf der ganzen Breite von theoretischen Berechnungen bis hin zum Bau von Funktionsmodellen daran gearbeitet, den supraleitenden Materialien zum Durchbruch zu verhelfen.

Ein Bereich, in dem der verlustfreie Stromtransport eine besonders große Rolle spielt, ist die Energie- und Magnettechnik. Große Hoffnungen werden dabei auf die Entwicklung von Bandleitern gesetzt, die aus einem kostengünstigen und leicht zu verarbeitendem Substrat bestehen und mit dem supraleitenden Material YBaCuO beschichtet sind. Voraussetzung für eine hohe Stromtragfähigkeit dieser Bandleiter ist, dass die supraleitende Schicht eine nahezu perfekte Kristallstruktur über die gesamte Länge aufweist. Das kann man erreichen, indem als Substrat Ni-Bänder verwendet werden, die durch eine starke Walzverformung mit anschließender Rekristallisation eine extrem scharfe Kornorientierung erhalten haben, die der danach aufgebrachten supraleitenden Schicht die Orientierung vermitteln und die maximale Stromdichte ganz wesentlich bestimmen. Diese Technik wurde 1996 im Oak Ridge National Laboratory (USA) erstmals demonstriert, bisher gelang jedoch nicht die Übertragung auf längere Bänder für praktische Anwendungen.


Im Rahmen eines europäischen Projektes gelang nun im IFW Dresden in Kooperation mit der Firma THEVA GmbH international erstmalig die Herstellung von hochstromtragenden YBaCuO-Bändern > 10 cm Länge. Damit ist ein wesentlicher Nachweis für die industrielle Eignung dieser Methode erbracht. Die Bänder weisen Stromdichten von bis zu 1.3 Megaampere pro Quadratzentimeter auf und tragen Gesamtströme bis zu 135 Ampere. Ein entscheidender Beitrag zu diesem Erfolg war die Herstellung eines Nickel-Wolfram-Bandes im IFW, das eine extrem scharfe und homogene Kornorientierung hat und zugleich zugfest, glatt und oxidationsstabil ist und damit optimale Beschichtungseigenschaften aufweist. Die anschließende Beschichtung mit YBaCuO erfolgte mittels thermischen Verdampfens beim Projektpartner THEVA in Eching.

Dieses Resultat ist ein wesentlicher Meilenstein für die weitere Entwicklung auf diesem Gebiet und lässt die Herstellung wirklich langer Bänder (>10m) in naher Zukunft erwarten.
Weitere Informationen:
Dr. Bernhard Holzapfel
IFW Dresden
Tel. 0351 - 4659 455, b.holzapfel@ifw-dresden.de

Weitere Informationen finden Sie im WWW:

www.ifw-dresden.de/imw/26/laser/la_ibald.htm

Dr. Carola Langer | idw

Weitere Berichte zu: Energietechnik IFW Stromdichte Supraleiter THEVA

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht TFK entwickelt Herstellungsverfahren für großflächige Metalldrahtnetze zum Einsatz in der Raumfahrt
09.07.2020 | Hochschule Hof - University of Applied Sciences

nachricht Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing
08.07.2020 | Universität Basel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics