Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ölkatastrophen ökologisch bekämpfen! Erfindung von TUD-Holztechnikern wird im Ostseeraum etabliert

07.01.2019

Die Holztechniker der TU Dresden haben holzfaserbasierte Ölbinder entwickelt, die Ölhavarien und Ölverschmutzungen bis zu 50 Tonnen schnell, effektiv, umweltfreundlich und nahezu vollständig beseitigen. Die kleinen Plättchen sind das Kernelement eines Havariesystems, das derzeit in der Ostsee etabliert wird. Schon bald soll die Technologie auch auf die Region des Persischen Golfes übertragen werden.

5 mal 5 Zentimeter groß und nur 4 Millimeter dick. Mit diesen kleinen Plättchen können Ölhavarien endlich ökologisch bekämpft werden. Die Ölbinder bestehen aus nachwachsenden, biologisch abbaubaren Holzfasern, die sehr hohe Reinigungsraten bei kleinen und mittleren Verschmutzungen aufweisen.


Pressebild Ökologische Ölbinder

Holger Unbehaun

Bisherige Technologien sind bei ungünstigen Wetterbedingungen (Starkwinden, hoher Seegang, starke Strömung), bei geringer Wassertiefe (z. B. Boddengewässer) oder in küstennahen Bereichen nur sehr eingeschränkt einsatzfähig.

Häufig werden witterungsbedingt chemische Mittel eingesetzt, die das Öl binden und es absinken lassen. Das unsichtbare Öl verbleibt im Meer.

Wissenschaftler der Professur für Holztechnik und Faserwerkstofftechnik der TU Dresden haben im Rahmen des Verbundprojektes „BioBind“ und eines Folgeprojektes in Kooperation mit den Universitäten Rostock und Leipzig sowie Industriepartnern ein Ölhavariebekämpfungssystem entwickelt, das eine schnelle Ölbeseitigung auch bei ungünstigen Wetterbedingungen und in Flachwassergebieten ermöglicht.

Kern der Entwicklung bilden die schwimmfähigen, holzfaserbasierten Ölbinder, die per Flugzeug oder Schiff ausgebracht und mit Netzsperren oder im Brandungsbereich der Küste wieder aufgenommen werden können. Erst beim Abwurf aus dem Flugzeug werden die Plättchen mit ölabbauenden Mikroorganismen besprüht. Das ermöglicht eine schnelle und nahezu vollständige Ölaufnahme von bis zu 92 Prozent.

Die Eignung der patentierten Ölbinder und des neuen BioBind Havariesystems wurde bei mehreren Seeerprobungen auf der Ostsee nachgewiesen. Der Einsatzschwerpunkt liegt bei Ölunfällen im Bereich von 5 bis 50 Tonnen. Bei größeren Havarien kann BioBind als Ergänzung zu bestehenden Bekämpfungssystemen eingesetzt werden, z. B. in küstennahen Gebieten.

Die neue Technologie der Dresdner Ingenieure ist derzeit das einzige biobasierte, freischwimmende Ölbinderprodukt, das für eine Ausbringung per Flugzeug und die anschließende Bergung mit Netzsperren geeignet ist. Die Binder weisen vergleichbare Beschaffungskosten zu den bestehenden Marktprodukten auf, sind durch eine höhere Ölaufnahmekapazität jedoch effizienter.

In einem Folgeprojekt wurde die Herstellung der Ölbinder und deren Ausrüstung bis zur Industriereife entwickelt. Sie bilden den Kern eines Havariesystems, das im Rahmen des EU- geförderten Verbundprojektes SBOIL unter Leitung der Universität Rostock zusammen mit Partnern aus den Ostseeanrainerstaaten aktuell im Südbaltischen Gebiet realisiert wird.

Die erwartete Zunahme der Öltransportkapazitäten auf der Ostsee nach dem Ausbau des Ölhafens in St. Petersburg führt zu einem erhöhten Havarierisiko für dieses Gebiet.

Seit 2017 bestehen enge Kontakte zu Forschungs- und Industriepartnern im Iran. Ziel eines geplanten Folgeprojektes ist der Transfer der BioBind-Technologie in die Region des Persischen Golfes, die zu den bedeutendsten Ölfördergebieten der Erde zählt. Hier sollen die Ölbinder auf der Basis lokaler landwirtschaftlicher Reststoffe regional produziert und eingesetzt werden, um so auch die Umwelt- und Lebensbedingungen in den betroffenen Regionen nachhaltig zu verbessern.

„Ich bin sehr dankbar, dass wir durch finanzielle Mittel aus dem Zukunftsfond der TU Dresden und organisatorische Unterstützung von TU-Projektscouts die Möglichkeit hatten, Projektpartner vor Ort zu gewinnen. Bei den Besuchen hat mich besonders die hervorragende Ausbildung, das Improvisationstalent und der Freiheitswillen der jungen iranischen Wissenschaftlerinnen und Wissenschaftler in diesem isolierten Land beeindruckt“, so der Inhaber der Professur für Holztechnik und Faserwerkstofftechnik an der TU Dresden, Prof. André Wagenführ.

Für ihre Forschungsarbeit zum Thema „Einsatz holzfaserbasierter Ölbinder zur Ölhavariebekämpfung auf dem Meer“ haben die Dresdner Wissenschaftler vor kurzem den Wilhelm-Klauditz-Preis für Holzforschung und Umweltschutz 2018 erhalten. Dieser Preis wird seit 1988 alle drei Jahre verliehen und ist mit 5.000 € dotiert. In diesem Jahr erhielten die Holztechniker der TU Dresden den Preis bereits zum dritten Mal.

An der Professur für Holztechnik und Faserwerkstofftechnik forschen Wissenschaftler und Studenten an innovativen Holzanwendungen, wie 3D-Druck, Tropenholzersatz bei Gitarren, ökologischen Dämmstoffen oder Feldbetten aus Papier für die humanitäre Hilfe in Epidemiegebieten.

Download hochaufgelöstes Pressematerial (Fotos, Videos): https://cloudstore.zih.tu-dresden.de/index.php/s/UgKc6xg8w01A2Fe

Wissenschaftliche Ansprechpartner:

Dipl.-Ing. Holger Unbehaun
Technische Universität Dresden
Institut für Naturstofftechnik
Professur für Holztechnik und Faserwerkstofftechnik
Tel.: +49 351 463-38109
E-Mail: holger.unbehaun@tu-dresden.de

Weitere Informationen:

https://cloudstore.zih.tu-dresden.de/index.php/s/UgKc6xg8w01A2Fe

Kim-Astrid Magister | Technische Universität Dresden
Weitere Informationen:
http://www.tu-dresden.de

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics