Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie unser Gehirn entsteht

29.10.2012
Es ist eine zentrale Frage rund um die Spezies Mensch: Wie kommt es, dass wir denken? Und wie entsteht dieses Organ, mit dem wir es tun: unser Gehirn?

Ein Forscherteam der Universität Leipzig hat sich dieser Frage angenommen und sogenannte "neuronale Wachstumskegel" näher untersucht, die dabei eine besondere Rolle spielen. Veröffentlicht haben Thomas Fuhs, Lydia Reuter und Iris Vonderhaid aus der Arbeitsgruppe von Professor Josef A. Käs, tätig in der Abteilung Physik weicher Materie an der Fakultät für Physik und Geowissenschaften, sowie Professor Dr. Thomas Claudepierre, Klinik und Poliklinik für Augenheilkunde am Universitätsklinikum Leipzig, ihre Ergebnisse jetzt in einem Artikel in der renommierten Fachzeitschrift „Cytoskeleton“. Er ist seit wenigen Tagen online und wird in Kürze auch im Heft erscheinen.

Das Säugetiergehirn beginnt seine Entwicklung nicht als vernetztes Gebilde. Die einzelnen Nervenzellen vernetzen sich erst im Laufe der Zeit. Hierzu senden die Nervenzellen Neurite aus. Wenn sich zwei Neurite treffen, können sie eine Synapse bilden und so eine Verbindung zwischen den beiden Nervenzellen herstellen. An der Spitze jedes wachsenden Neurits befindet sich ein "Wachstumskegel".

Die Forschergruppe um Thomas Fuhs hat besonders die Frage interessiert, wie stark so ein Wachstumskegel ist. Welche Hindernisse kann er aus dem Weg schieben, und wann scheitert er? Dazu haben sie den Wachstumskegeln "Hindernisse" in den Weg gesetzt, die mit der Tastfeder eines Rasterkraftmikroskops verbunden sind. Wenn der Wachstumskegel weiter wächst, drückt er gegen das Hindernis - und diese Kraft lässt sich mit dem Rasterkraftmikroskop aufzeichnen. Um gegen ein Hindernis drücken zu können, muss sich der Wachstumskegel am Substrat festhalten und steif genug sein, um nicht zwischen Hindernis und Substrat zerquetscht zu werden.

Die Ergebnisse zeigen, dass Wachstumskegel des zentralen Nervensystems im Vergleich zu anderen Zellen geringere Kräfte erzeugen. Darüber hinaus sind sie deutlich weicher als die meisten anderen Zellen, wie etwa Fibroblasten oder Endothelzellen. Wieso haben aber grade diese Zellen, die für die Steuerung des ganzen Organismus verantwortlich sind, so schlechte Karten wenn es darum geht, ihr Ziel zu erreichen? Es könnte zu ihrem eigenen Schutz sein. Denn ihre normale Umgebung im Gehirn besteht aus ebenfalls sehr weichen Gliazellen. In dieser weichen Umgebung sind die erzeugten Kräfte dann wieder ausreichend. Zum anderen ist das Gehirn von Blutgefäßen durchzogen, in diese sollten sich die Neuriten nicht verirren.

Die Wände von Blutgefäßen im Hirn sind über eine Größenordnung steifer als Wachstumskegel, und damit für diesen quasi undurchdringlich. Nachteilig kann sich die Schwäche der Wachstumkegel allerdings auswirken, wenn sich geschädigtes Gewebe in Folge einer Verletzung verhärtet.

Dieser Aspekt hat in der bisherigen Forschung zur Neuroregeneration praktisch keine Rolle gespielt. Nun hofft die Forschergruppe, mit ihrer Arbeit ein weiteres Puzzleteil bei der Antwort auf die Frage, wie unser Gehirn entsteht, hinzufügen zu können. Und vielleicht hilft das beim Verständnis, warum sich das zentrale Nervensystem nach Verletzungen nicht regeneriert.

Weitere Informationen:
Prof. Dr. Josef A. Käs
Telefon: +49 341 97-32470
E-Mail: jkaes@physik.uni-leipzig.de
www.uni-leipzig.de/~pwm
Thomas Fuhs
Physik weicher Materie
Telefon: +49 341 97-32486
E-Mail: TFuhs@physik.uni-leipzig.de
www.uni-leipzig.de/~pwm

Ronny Arnold | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Magnetische Nanopropeller liefern genetisches Material an Zellen
11.05.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Weit mehr als „Rost“: Korrosion geht alle an
22.04.2020 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call – Wenn Mikroimplantate miteinander kommunizieren / Innovationstreiber Digitalisierung - »Smart Health«

Die Mikroelektronik als Schlüsseltechnologie ermöglicht zahlreiche Innovationen im Bereich der intelligenten Medizintechnik. Das vom Fraunhofer-Institut für Biomedizinische Technik IBMT koordinierte BMBF-Verbundprojekt »I-call« realisiert erstmals ein Elektroniksystem zur ultraschallbasierten, sicheren und störresistenten Datenübertragung zwischen Implantaten im menschlichen Körper.

Wenn mikroelektronische Systeme für medizintechnische Anwendungen eingesetzt werden, müssen sie hohe Anforderungen hinsichtlich Biokompatibilität,...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: Wenn aus theoretischer Chemie Praxis wird

Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die renommierte Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der in dieser Woche veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde.

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Mikroroboter rollt tief ins Innere des Körpers

Mit einem Leukozyten als Vorbild haben Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart einen Mikroroboter entwickelt, der in Größe, Form und Bewegungsfähigkeit einem weißen Blutkörperchen gleicht. In einem Labor simulierten sie dann ein Blutgefäß – und es gelang ihnen, den Mikroroller durch diese dynamische und dichte Umgebung zu steuern. Der Roboter hielt dem simulierten Blutfluss stand und brachte damit das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe einen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im menschlichen Körper als den Blutkreislauf.

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Künstliche Intelligenz für einen optimierten Mobilfunk

25.05.2020 | Informationstechnologie

Struktur mit dem gewissen Extra

25.05.2020 | Materialwissenschaften

Batterieforschung: Lithium kommt in Sicht

25.05.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics