Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Track & Trace Fingerprint: Bauteil-Rückverfolgung per »Fingerabdruck«

01.06.2017

Stark vernetzte Fertigungsketten, Kostenfragen und technische Umsetzbarkeit erschweren in der Massenproduktion die Rückverfolgung einzelner Komponenten. Für die Produktions- und Prozessoptimierung sind effiziente »Track & Trace«-Lösungen jedoch eine wichtige Voraussetzung – vor allem im Kontext von Industrie 4.0. Das Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg hat daher mit »Track & Trace Fingerprint« ein markerfreies System zur Rückverfolgung von Massenbauteilen entwickelt.

In Zeiten hoch vernetzter Produktionsabläufe und globaler Zulieferketten ist es für die Industrie eine Herausforderung, einzelne Komponenten komplexer Produkte im Nachhinein zurückzuverfolgen. Bei hochpreisigen Komponenten werden RFID-Etiketten, DataMatrix-Codes oder auch chemische Marker zur Identifizierung eingesetzt. Eine lückenlose Rückverfolgbarkeit von Bauteilen und Produktionshistorien ist jedoch auch in der Massenproduktion sinnvoll, denn einmal verbaut können auch die kleinsten und auf den ersten Blick unscheinbarsten Teile die Qualität eines komplexen und teuren Endprodukts beeinträchtigen.


Das Fraunhofer IPM hat mit »Track & Trace Fingerprint« ein markerfreies System zur Rückverfolgung von Massenbauteilen entwickelt.

© Fraunhofer IPM

»Insbesondere für kleine, preissensitive Elemente wie beispielsweise elektrische Steckverbinder oder Zündkerzen sind daher praktikable und zugleich kostengünstige ›Track & Trace‹-Lösungen gefragt. Etiketten oder spezielle Markierungen erweisen sich hierbei jedoch oftmals als zu teuer oder technisch nicht realisierbar«, erklärt Dr. Alexander Förste, Projektleiter »Track & Trace Fingerprint« am Fraunhofer IPM. »Um dieser Problematik zu begegnen, haben wir mit ›Track & Trace Fingerprint‹ ein effizientes System zur Rückverfolgung von Massenbauteilen entwickelt, das die individuelle Wiedererkennung und Authentifizierung einzelner Komponenten ermöglicht.«

Auch Massenbauteile sind Unikate

Die neue Fraunhofer-Technologie nutzt die individuell ausgeprägte Mikrostruktur der Oberflächen von Bauteilen und Halbzeugen. Zunächst wird ein ausgewählter Bereich des Bauteils mit all seinen spezifischen Strukturen und deren Position mit einer Industrie-Kamera hochaufgelöst aufgenommen. Aus dem Bild wird eine charakteristische Bitfolge – der »Fingerprint« – errechnet und einer individuellen ID zugeordnet. Diese Paarung wird in einer Datenbank hinterlegt.

Die ID kann dann mit weiteren Informationen wie Mess- oder Herstellungsdaten verknüpft werden. Für eine spätere Identifizierung des Bauteils wird der Vorgang einfach wiederholt – ein Datenabgleich nach der Bildaufnahme liefert zuverlässig und fehlerfrei den entsprechenden Fingerprint-Code und somit weitere individuelle Merkmale des Bauteils.

»Das Eingravieren einer Seriennummer oder das Aufbringen eines Barcodes verbietet sich auf einer Dicht- wie auch auf einer dekorativen Oberfläche. Unser neuer Ansatz dagegen ist auch im Hinblick auf Massenbauteile effizient, praxistauglich und kostensparend: Eine große Bandbreite an Materialien eignet sich für diese Art der markierungsfreien Rückverfolgung – von glatten Kunststoffen über Aluminium und Eisenguss bis hin zu lackierten Oberflächen«, erläutert Förste.

»Der stochastische ›Fingerabdruck‹ eines Bauteils lässt sich auch bei Losgrößen von mehreren 100.000 Stück im Sekundentakt eindeutig identifizieren – dies ermöglicht eine Zuordnung von bauteilbezogenen Daten im Produktionstakt. Da keine zusätzlichen Marker oder IDs am Produkt angebracht werden, ist dieses System nicht nur fälschungssicher, sondern auch sehr ökonomisch realisierbar – es fallen schließlich keine stückzahlabhängigen Kosten an.« Die robuste Objekterkennung funktioniert durch die große Zahl möglicher Messpunkte zuverlässig auch bei Störeinflüssen wie Verunreinigungen oder Kratzern.

Ohne Rückverfolgbarkeit keine Prozessoptimierung

Eine vollständige und markierungsfreie Rückverfolgbarkeit über den gesamten Herstellungsprozess schafft einen spürbaren Mehrwert, gerade in Branchen mit hohen Qualitätsstandards wie etwa der Automobilindustrie oder der Medizintechnik. Einen ersten Prototyp des neuen Verfahrens hat das Fraunhofer IPM im Rahmen des Projekts »Track4Quality« bereits im Einsatz. Zudem wird in der zweiten Jahreshälfte 2017 bei einem Partner aus der Automobilzulieferindustrie eine Pilotinstallation in Betrieb genommen. »Unsere Technologie zeigt anschaulich, wie die Vernetzung von Digitalisierungslösungen und herkömmlichen Fertigungsprozessen im Rahmen der Industrie 4.0 in der Praxis funktioniert«, so Förste.

»Die Qualität komplexer Industrieprodukte kann von der Beschaffenheit jedes einzelnen Bauteils abhängen. Wenn ein einziger, nur wenige Cent teurer fehlerhafter Stecker die Funktionsfähigkeit und Langlebigkeit einer komplexen Elektronik-Steuerbox zum Beispiel im Automobil gefährdet, werden oft sämtliche verbaute Stecker in ›Sippenhaft‹ genommen. Unser Verfahren verhindert solch aufwendige und kostenintensive Großeingriffe in die Produktions- und Wertschöpfungskette.« Wenn produzierende Unternehmen auch kleinste Schlüsselkomponenten in der Massenproduktion rasch und zweifelsfrei zurückverfolgen können, trägt dies zur Optimierung ihrer Prozesse bei – beispielsweise bei der Verbesserung von Produktions- und Montageabläufen, bei eventuell notwendigen Rückrufaktionen oder beim Recycling.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2017/juni/bauteil-rueckv...

Holger Kock | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht IT-Sicherheit beim autonomen Fahren
22.06.2018 | Fachhochschule St. Pölten

nachricht Schneller und sicherer Fliegen
21.06.2018 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics