Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Qutrit": Komplexe Quantenteleportation erstmals gelungen

19.08.2019

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals experimentell durchgeführt: Gemeinsam mit Quantenphysikern der University of Science and Technology of China gelang ihnen die Teleportation komplexer hochdimensionaler Quantenzustände. Über diese internationale Premiere berichtet das Forschungsteam nun im Fachjournal „Physical Review Letters“.


Österreichischen und chinesischen Wissenschaftlern ist es erstmals gelungen, dreidimensionale Quantenzustände zu übertragen (Illustration)

(c) ÖAW/Harald Ritsch

Für ihre Studie teleportierten die Forscher einen Quantenzustand von einem Photon (Lichtteilchen) zu einem anderen. In bisherigen Experimenten wurden nur Zwei-Ebenen-Zustände („Qubits“) übertragen, also Informationen mit dem Wert „0“ oder „1“. Den Wissenschaftlern gelang es nun aber, einen Drei-Ebenen-Zustand („Qutrit“) zu übertragen. Anders als in der Computertechnik ist „0“ und „1“ aber keine Frage von entweder-oder, denn laut den Gesetzen der Quantenphysik ist theoretisch auch beides gleichzeitig oder auch alles dazwischen möglich – nun eben auch mit einer dritten Möglichkeit „2“, wie das österreichisch-chinesische Team in der Praxis zeigen konnte.

Eigens entwickelte, neue experimentelle Methode

Dass die mehrdimensionale Quantenteleportation theoretisch machbar ist, war zwar schon seit den 1990er Jahren bekannt. „Die tatsächliche Realisierung im Labor und die dazu benötigte Technologie mussten wir aber erst entwickeln“, berichtet Manuel Erhard vom Wiener Institut für Quantenoptik und Quanteninformation der ÖAW.

Beim übertragenen Quantenzustand handelt es sich um die Information, in welcher von drei möglichen Glasfasern (Lichtleitern) sich ein Photon befindet. Dabei kann sich dieses Photon auch auf allen drei Glasfasern gleichzeitig befinden. Um diese Quanteninformation bzw. diesen Quantenzustand zu teleportieren, verwendeten die Forscher eine neue experimentelle Anordnung. Das Herzstück der Quantenteleportation bildet die sogenannte Bell-Messung. Sie basiert einerseits auf einem Mehrfach-Strahlteiler, der Photonen durch mehrere Ein- und Ausgänge leitet und alle Glasfasern miteinander verbindet. Zusätzlich kommen nun auch Hilfsphotonen zum Einsatz, die ebenfalls in den Mehrfach-Strahlteiler gesendet werden und mit den anderen Photonen interferieren können.

Durch die geschickte Auswahl bestimmter Interferenzmuster, kann nun die Quanteninformation dort, wo sich das Eingangsphoton befunden hat, auf ein anderes weit entferntes Photon übertragen werden. Und das, obwohl die Photonen zu keinem Zeitpunkt physisch miteinander in Kontakt standen. Das nun erfolgreich getestete Setting ist übrigens nicht auf drei Dimensionen beschränkt, sondern prinzipiell auf beliebig viele Dimensionen erweiterbar, wie Erhard betont.

Höhere Informationskapazitäten für Quantencomputer

Damit ist dem internationalen Forschungsteam auch ein wichtiger Schritt hin zu praktischen Anwendungen wie einem Quanteninternet gelungen, schließlich können höherdimensionale Quantensysteme deutlich größere Informationsmengen transportieren. „Dieses Ergebnis könnte hilfreich sein, mehrere Quantencomputer gleichzeitig miteinander zu verbinden, und zwar mit höheren Informationskapazitäten als mit Qubits prinzipiell möglich“, beschreibt Anton Zeilinger, Quantenphysiker an der ÖAW und der Universität Wien, das innovative Potenzial der neuen Methode.

Auch die beteiligten chinesischen Forscher sehen große Chancen in der mehrdimensionalen Quantenteleportation. „Den Grundstein für die nächste Generation von Quantenkryptographie-Systemen legt unsere heutige Grundlagenforschung“, sagt Jian-Wei Pan, der an der University of Science and Technology of China forscht und kürzlich auf Einladung von Universität Wien und ÖAW einen Vortrag in Wien hielt.

Die nächsten Forschungen der Quantenphysiker werden sich nun mit der Frage befassen, wie man die neugewonnenen Erkenntnisse erweitern kann, um den gesamten Quantenzustand eines einzelnen Photons oder Atoms zu teleportieren.

Wissenschaftliche Ansprechpartner:

Manuel Erhard
Österreichische Akademie der Wissenschaften
Institut für Quantenoptik und Quanteninformation Wien
Boltzmanngasse 3, 1090 Wien
T +43 1 4277-29568
M +43 664 75026762
manuel.erhard@oeaw.ac.at

Originalpublikation:

"Quantum teleportation in high dimensions", Yi-Han Luo, Han-Sen Zhong, Manuel Erhard, Xi-Lin Wang, Li-Chao Peng, Mario Krenn, Xiao Jiang, Li Li, Nai-Le Liu, Chao-Yang Lu, Anton Zeilinger, and Jian-Wei Pan, Physical Review Letters, 2019
DOI: https://doi.org/10.1103/PhysRevLett.123.070505

Weitere Informationen:

https://www.oeaw.ac.at/

Stefan Meisterle | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.oeaw.ac.at/detail/news/qutrit-komplexe-quantenteleportation-erstmals-gelungen-1/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Digitale Assistenzsysteme in der Produktion
19.09.2019 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht KI ermöglicht klinische Bildgebungsanalyse in der Augenheilkunde
19.09.2019 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modulare OLED-Leuchtstreifen

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP, ein Anbieter von Forschung und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik, stellt auf dem International Symposium on Automotive Lighting 2019 (ISAL), vom 23. bis 25. September 2019, in Darmstadt, am Stand Nr. 37 erstmals OLED-Leuchtstreifen beliebiger Länge mit Zusatzfunktionalitäten vor.

Leuchtstreifen für das Innenraumdesign kennt inzwischen nahezu jeder. LED-Streifen sind als Meterware im Baumarkt um die Ecke erhältlich und ebenso oft als...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

Diabetes: wenn eine Diagnose das Leben der Betroffenen auf den Kopf stellt

19.09.2019 | Veranstaltungen

Woher kommt der Nordsee-Plastikmüll

18.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hochempfindliche Sensoren sollen Herz- und Hirnströme messen

19.09.2019 | Medizintechnik

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungsnachrichten

Diabetes: wenn eine Diagnose das Leben der Betroffenen auf den Kopf stellt

19.09.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics