Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lösung für langzeitstabile ReRAMs

19.10.2015

Jülicher Forscher entwickeln Designregeln für ausfallsichere memristive Speicherbauelemente

Sie sind um ein Vielfaches schneller als FLASH-Speicher und benötigen deutlich weniger Energie: ReRAM-Speicher könnten die Computertechnik in den nächsten Jahren revolutionieren. Doch für viele Anwendungen sind die memristiven Speicherzellen noch zu fehleranfällig.


Blick in das memristive SrTiO3 Bauelement: Spektromikroskopische Identifizierung des schaltenden Filamentes und der SrO-Lage, die die Rückdiffusion von Sauerstoff verhindert.

Copyright: Forschungszentrum Jülich


Prof. Regina Dittmann am Photoemissionsmikroskop NanoESCA im Electronic Oxide Cluster Labor des Jülicher Peter Grünberg Instituts (PGI-7), mit dem die Transportvorgänge untersucht wurden.

Copyright: Peter Winandy

Ein Jülicher und Aachener Forscherteam konnte nun aufdecken, wie sich Speicherzellen, die schnell Daten verlieren, mikroskopisch von jenen unterscheiden, die über lange Zeit stabil sind. Zugleich stießen sie auf eine Lösung für fehlerresistente Speicherzellen: eine Speicherschicht für Sauerstoff-Ionen, die den unerwünschten Vorgang verlangsamt und womöglich ganz unterdrückt. Die Ergebnisse sind in der Fachzeitschrift Nature Communications erschienen.

Memristive Speicherbauelemente gelten als Hoffnungsträger für die Computer der Zukunft. Darüber hinaus sind sie wie geschaffen für die Verschaltung zu sogenannten neuromorphen Systemen, die Daten mit Methoden verarbeiten, die dem Gehirn nachempfunden sind. Entsprechende Speicherbausteine gelten als äußerst schnell, energiesparend und lassen sich sehr gut bis in den Nanometerbereich miniaturisieren.

Zudem handelt es sich – anders als beim aktuell gängigen DRAM-Arbeitsspeicher – um einen nichtflüchtigen Speichertyp. Die Daten bleiben auch dann noch erhalten, wenn der Strom abgeschaltet wird, was die Zeit für das Hochfahren des Rechners auf wenige Sekunden verkürzen könnte.

Noch ist die Technologie allerdings nicht ausgereift genug, um die gängigen Speichertypen zu verdrängen. "In Laborexperimenten konnte man schon zeigen, dass die eingeschriebene Information in einem memristiven Speicherbauelement prinzipiell 10 Jahre lang erhalten bleibt, ohne dass sie neu aufgefrischt werden müsste. Es gibt aber immer einzelne Speicherzellen, die ihre Daten schon viel früher verlieren. Warum, war lange nicht klar", erklärt Prof. Regina Dittmann vom Jülicher Peter Grünberg Institut (PGI-7).

In der Vergangenheit hatten die Forscherinnen und Forscher unter der Leitung von Prof. Rainer Waser bereits maßgeblich dazu beigetragen, die mikroskopischen Mechanismen des Schaltverhaltens aufzuklären. Nun konnten sie im Rahmen des Sonderforschungsbereichs SFB 917 auch die Vorgänge klären, die für den vorzeitigen Datenverlust verantwortlich sind. "Entscheidend ist hierfür die Bewegung von Sauerstoff-Ionen, die auch für den Schaltprozess unerlässlich ist", erläutert Dittmann.

Die Funktionsweise memristiver Zellen beruht auf einem ganz besonderen Effekt: Ihr elektrischer Widerstand ist nicht konstant, wie es die Regel ist. Vielmehr lässt er sich durch das Anlegen einer äußeren Spannung verändern und wieder zurücksetzen. So stellt beispielsweise ein niedriger Widerstandszustand die logische "1" und ein hoher Widerstandszustand die logische "0" dar.

Mehr Symbole braucht es nicht, um alle Informationen in einem binären Code abzuspeichern. Die Änderung des elektrischen Widerstands wird dabei durch die Wanderung von Sauerstoff-Ionen herbeigeführt. Bewegen sich die Ionen aus der sauerstoffhaltigen Metalloxidschicht heraus, so wird das Material schlagartig leitfähig – der elektrische Widerstand sinkt. Doch im Laufe der Zeit kann es passieren, dass die Sauerstoff-Ionen wieder von alleine zurückwandern und die gespeicherte Information verlorengeht.

"Obwohl sich erste memristive Speicher bereits seit etwa zwei Jahren auf dem Markt befinden, wurden diese Speicherbauelemente bisher weitgehend mithilfe rein empirischer Methoden optimiert", erläutert Dittmann. Die Schaltprozesse laufen innerhalb winziger Filamente ab. Um sie zu erforschen, hat sie die Reaktionen im Jülicher Electronic Oxide Cluster Labor und am italienischen Elektronen-Synchrotron Elettra in Triest in enger Kooperation mit der Arbeitsgruppe von Prof. Claus Michael Schneider am Jülicher Peter Grünberg Institut (PGI-6) mit Nanometer-Präzision sichtbar gemacht.

Dabei stießen die Wissenschaftler zugleich auf eine Lösung des Problems. "Wir haben festgestellt, dass sich bei allen zeitstabilen Strontiumtitanat-Zellen eine Strontiumoxid-Schicht an der Oberfläche der Elektrode abgelagert hatte. Dies brachte uns auf die Idee, dass die Strontiumoxid-Schicht Sauerstoff-Ionen nur sehr langsam transportiert – und somit die Zeitstabilität der Zelle verbessert", erläutert Dittmann.

Berechnungen in der Gruppe von Dr. Roger De Souza vom Institut für Physikalische Chemie an der RWTH Aachen bestätigten die Vermutung, woraufhin das Team Materialien auswählen konnte, die ähnliche Merkmale aufweisen, sich aber besser gezielt auf die Elektrodenoberfläche aufbringen lassen. Als eine Art Speicherschicht für Sauerstoff verhindern sie die Rückdiffusion.

Damit konnte erstmals eine Designregeln für ReRAM Zellen aus dem mikroskopischen Verständnis des Sauerstofftransports innerhalb der Zellen abgeleitet werden. Merkliche Auswirkungen auf die Schaltgeschwindigkeit sind nicht zu erwarten, da sich der Sauerstofftransport mit steigender Spannung und Temperatur während des Schaltvorgangs schlagartig erhöht.


Originalpublikation:
Christoph Baeumer, Christoph Schmitz, Amr H. H. Ramadan, Hongchu Du, Katharina Skaja, Vitaliy Feyer, Philipp Müller, Benedikt Arndt, Chun-Lin Jia, Joachim Mayer, Roger A. De Souza, Claus Michael Schneider, Rainer Waser, and Regina Dittmann, "Spectromicroscopic insights for rational design of redox-based memristive devices", Nature Communications 6:8610 doi: 10.1038/ncomms9610 (2015).

Weitere Informationen:

Dossier "Resistive Speicher"
Peter Grünberg Institut, Elektronische Materialien (PGI-7)
Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6)


Institut für Physikalische Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen


Ansprechpartner:

MSc. Christoph Bäumer
Peter Grünberg Institut (PGI-7)
Tel. 02461 61-5339
E-Mail: c.baeumer@fz-juelich.de

Prof. Dr. Regina Dittmann
Peter Grünberg Institut (PGI-7)
Tel. 02461 61-4760
E-Mail: r.dittmann@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation
Tel. 02461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-10-19reram.html

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker
17.08.2018 | Institute of Science and Technology Austria

nachricht Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit
16.08.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics