Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die perfekte Wolke für Hollywood

05.12.2017

Vergleicht man Filme, die vor 20 Jahren gedreht wurden mit heutigen Produktionen, wird schnell klar: Computeranimationen haben die Filmindustrie grundlegend verändert. Allerdings sind Rauch und realistisch aussehende Wolken immer noch extrem schwer zu simulieren. Forscher und Forscherinnen der Technischen Universität München (TUM) haben eine neue Methode entwickelt, die die Animationstechnik revolutionieren könnte.

Nils Thürey weiß aus eigener Erfahrung, wie zeitaufwändig, mühsam und auch teuer die Produktion von Simulationen ist – er hat in Hollywood als Research & Development Lead unter anderem an Spezialeffekten von Filmen wie „Iron Man 3“ und „Super Man: Man of Steel“ mitgearbeitet.


Die Abbildung zeigt den Vorentwurf (kleines Bild) einer Rauchwolke und die hochaufgelöste Version, deren Details mit Hilfe des Deep Learning Algorithmus berechnet wurden.

Chu, Thuerey / TUM

Für seine Forschung auf dem Gebiet der physikalischen Simulation für visuelle Effekte und Computer Generated Imagery (CGI) gewann er bereits einen Technical Oscar. Der Professor für Games Engineering an der TUM beschäftigt sich in seiner Forschung vor allem mit der Simulation von Flüssigkeiten und Gasen, sogenannten Fluiden. Diese realistisch darzustellen, ist extrem schwierig.

„Um die Feinheiten von realem Rauch oder Wolken darstellen zu können, benötigt man eine extrem hohe räumliche Auflösung“, erklärt Doktorandin Mengyu Chu. „Das erfordert sehr viel Rechenleistung und führt zu enorm teuren Simulationen, die quälend lange brauchen, bis sie ausgespielt sind.“ Thürey ergänzt: „Die Simulation einer Rauchwolke kann einen ganzen Tag in Anspruch nehmen – oder auch mehr. Und wenn dem Regisseur die Simulation dann nicht gefällt, muss der Grafiker wieder bei Null anfangen.“

Der virtuelle Bibliothekar

Chu und Thürey haben nun eine neue Methode entwickelt, in der sie die klassischen Simulations-Algorithmen mit Deep-Learning-Techniken kombinieren. Deep Learning gehört zum Bereich des maschinellen Lernens, bei dem Muster und Zusammenhänge aus großen Datenmengen erkannt werden.

Bei der neu entwickelten Methode dient ein umfangreiches Archiv von bereits bestehenden Simulationen als Basis. Von den Simulationen existieren jeweils zwei Versionen: Eine grobe, ungenaue Vorberechnung und die physikalisch korrekte, aufwändig erstellte Version.

Der Deep-Learning-basierte Algorithmus weiß, welche Paare zusammengehören und lernt daraus, einem unbekannten groben Entwurf die entsprechenden ausgefeilten Simulationen zuordnen zu können. Bei dem Algorithmus handelt es sich sozusagen um einen virtuellen Bibliothekar.

Algorithmus könnte in der Medizin angewendet werden

Chu und Thürey haben das Ziel ein umfassendes Archiv von Simulationen zu entwickeln. „Wenn wir ein solches Archiv für digitale Spezialeffekte aufbauen könnten, hätten auch Produzenten mit einem kleinen Budget die Möglichkeit, einen Wolken- oder Rauch-Effekt zu nutzen, der bereits produziert wurde und ihn so zu verändern, dass es ihren Anforderungen entspricht“, sagt Chu.

„Momentan ist unsere Arbeit vor allem für die Film- und Computerindustrie interessant“, sagt Thürey. „Aber unser Ziel ist es, die Methode für alle Arten von realistischen Simulationen einzusetzen, zum Beispiel auch in der Medizin. Mich interessiert dabei besonders der Blutkreislauf im menschlichen Körper.“ In der Filmindustrie könnte die neue Methode viel Zeit und Geld sparen – im Krankenhaus sogar Leben retten.


Die Forschung ist Teil des Projekts „realFlow – Virtualization of Real Flows for Animation and Simulation”, für das Thürey 2015 einen Starting Grant des European Research Council erhalten hat. Das Ziel des Forschungsvorhabens ist es, Simulationen physikalischer Prozesse besser und vor allem schneller berechnen zu können.

Kontakt:

Prof. Dr. Nils Thürey
Technische Universität München
Fakultät für Informatik
+49 89 289 19484
nils.thuerey@tum.de

Mengyu Chu
mengyu.chu@tum.de
+49.89.289.19482

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34307/

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Algorithmus European Research Council Feinheiten Körper Simulation Wolke

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Innovative Technologien für Satelliten
07.04.2020 | Julius-Maximilians-Universität Würzburg

nachricht Virtueller Roboterschwarm auf dem Mars
06.04.2020 | Technologie-Zentrum Informatik und Informationstechnik

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics