Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dehnungsmessung – schnell und vielseitig wie nie

14.06.2017

Fraunhofer IPM hat gemeinsam mit dem Fraunhofer IWM ein neues Dehnungsmesssystem entwickelt, das die Vorteile optischer und mechanischer Messverfahren vereint und die Prüfzeiten bei Belastungstests drastisch verkürzt. Dadurch wird es zum vielseitigen Werkzeug für die schnelle Werkstoffprüfung. Das Messsystem wird vom 27.–29. Juni 2017 auf der »8th International Conference on Low Cycle Fatigue LCF8« in Dresden präsentiert.

Innovative Werkstoffe verbessern die Funktion und erweitern den Einsatzbereich von Bauelementen, Maschinen und Anlagen. Beispielhaft dafür stehen relativ junge Branchen wie der Leichtbau. Bauteile auf Basis neuer Werkstoffe müssen jedoch jeweils neu qualifiziert werden, um die Belastbarkeit und Sicherheit des späteren Produkts zu gewährleisten.


Zyklischer Ermüdungsversuch bei 1000 °C mit taktilem und optischem Dehnungssensor.

Fraunhofer IPM / Fraunhofer IWM

Im Hinblick auf die mechanischen Eigenschaften und die Lebensdauer geschieht dies u. a. mithilfe von Ermüdungsversuchen unter zyklischer Belastung. Doch diese Messung braucht ihre Zeit: Die Prüfdauer beträgt typischerweise einige Stunden bis Tage. Jetzt ist es Wissenschaftlern von Fraunhofer IPM und Fraunhofer IWM gelungen, die Prüfzeiten für berührungsfreie, dehnungsgeregelte Ermüdungsversuche um den Faktor zehn zu senken.

Berührungs- und markierungsfrei

Optische Dehnungsmessungen funktionieren immer berührungslos und somit ohne Schlupf. Dabei wird nicht nur die mittlere Dehnung zwischen zwei Punkten ermittelt, sondern die Messungen erlauben auch bildgebende Analysen. So kann beispielsweise die Ursache im Falle von Materialversagen nachträglich analysiert werden. Diese Vorteile gelten bereits für heute übliche optische Systeme. Ihr großer Nachteil ist jedoch bisher die geringe Messgeschwindigkeit.

Kurze Messzeiten wurden bei Ermüdungsversuchen bisher nur mit taktilen Extensometern erreicht. Der dafür notwendige Anpressdruck verfälscht jedoch die Ergebnisse im Hinblick auf die plastische Verformung – insbesondere bei Leichtbau-Werkstoffen oder unter hohen Temperaturen. Moderne Bildverarbeitungstechnologien erlauben es nun erstmals, die Vorteile taktiler und optischer Extensometer zu kombinieren:

Schnelle, hochauflösende Kameras können Mikrostrukturen auch auf polierten Proben zuverlässig erfassen. Dadurch entfällt die aufwändige Probenpräparation mit Markern. Gleichzeitig verbessert sich die Messgenauigkeit, da alle Merkmale der Mikrostruktur zur Verschiebungsmessung ausgewertet werden.

Echtzeit-Auswertung mit 1000 Hz

Moderne Kameras können die Mikrostruktur einer Werkstückoberfläche mehr als 1000 Mal pro Sekunde aufnehmen, konventionelle Prozessoren jedoch nur etwa 200 rechenintensive Bildkorrelationen pro Sekunde auswerten. Erst durch eine parallelisierte Bildauswertung auf Grafikkarten lässt sich die Dehnung mit über 1000 Hz messen – ohne die Schlupfbegrenzung taktiler Extensometer. Die Messgenauigkeit des neuen Fraunhofer-Dehnungsmesssystems entspricht der Klasse 0,5 nach DIN ISO 9513. Die Größe des Bildfeldes kann an die Prüfaufgabe angepasst werden, so dass die Echtzeit-Auswertung auch dehnungsgeregelte Versuche im Mikro- und Makrobereich erlaubt.

Holger Kock, Fraunhofer IPM Kommunikation | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht IT-Sicherheit beim autonomen Fahren
22.06.2018 | Fachhochschule St. Pölten

nachricht Schneller und sicherer Fliegen
21.06.2018 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics