Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Passwort der anderen Art: Schädelknochen liefert digitalen Zugangscode

11.05.2016

Auf Laptops und Smartphones speichern und organisieren Menschen inzwischen ihr gesamtes Leben – geschützt durch ein Passwort oder eine Geheimnummer. Diese sind jedoch oft nicht sicher, da Nutzer sie falsch wählen oder schlecht aufbewahren. Mit so genannten biometrischen Merkmalen wie Fingerabdruck, Stimme oder Iris kann man sich heute schon einfacher und sicherer ausweisen. Informatiker der Universität des Saarlandes und der Universität Stuttgart setzen nun auf ein bisher ungenutztes biometrisches Merkmal, das bei Brillencomputern wie Google Glass angewendet werden kann: Der Schädelknochen des Anwenders liefert den digitalen Zugangscode. Das Verfahren könnte auch Smartphones absichern.

„Brillencomputer wie Google Glass finden insbesondere in Unternehmen und Universitäten ihren Einsatz: Sie helfen bei Physik-Experimenten, in Chemie-Laboren, zeichnen medizinische Untersuchungen auf und unterstützen Kinderärzte während Operationen“, sagt Andreas Bulling vom Exzellenzcluster für „Multimodal Computing and Interaction“ an der Universität des Saarlandes.


Informatiker nutzen den Schädelknochen und Sensoren des Brillencomputers Google Glass, um den legitimen Nutzer zu identifizieren.

Foto: Oliver Dietze

Dort leitet der 35 Jahre alte Informatiker die Gruppe „Perceptual User Interfaces“ und forscht außerdem am benachbarten Max-Planck-Institut für Informatik. „Die Nutzer haben bei diesen Anwendungen nicht die Hände frei, um umständlich ein Passwort einzugeben. Außerdem teilen sich oft mehrere Personen ein Gerät und speichern darauf sensible Daten ab“, erklärt Bulling.

Nicht nur die Daten, auch die Brillencomputer selbst lassen sich leicht stehlen. Dies bestätigt eine Studie des Branchenverbandes Bitkom aus dem vergangenen Jahr. 28 Prozent der 1074 befragten Sicherheitsexperten aus Unternehmen geben an, dass in den vergangenen zwei Jahren Geräte auf diese Art und Weise samt den darauf gespeicherten Daten verschwunden sind.

Um im Falle eines Diebstahls den Zugang zu Google Glass zu schützen und den rechtmäßigen Nutzer zu erkennen, haben Andreas Bulling und Youssef Oualil von der Universität des Saarlandes zusammen mit Stefan Schneegass von der Universität Stuttgart eine neue Methode entwickelt. Dabei nutzten die Forscher auf geschickte Art und Weise die Sensoren, über die der Brillencomputer ohnehin verfügt.

Neben dem Miniatur-Mikrofon ist dies der sogenannte Bone Conduction Speaker, der unsichtbar in das Gestell in der Nähe des rechten Ohrbügels eingelassen ist. Mit Hilfe der „Knochenleitung“, auch Knochenschall genannt, überträgt er Töne auf die gleiche Art und Weise zum Ohr, wie es spezielle Hörgeräte tun. Dazu leitet er Schallschwingungen über den das Ohr umgebenden Schädelknochen direkt an das Innenohr.

„Da der Schädelknochen individuell unterschiedlich ist, wird dabei das Tonsignal auf eine für jeden Menschen charakteristische Art und Weise verändert. Das aus dem Schädelknochen austretende Tonsignal nutzen wir dann als biometrisches Merkmal“, erläutert Bulling. Dazu lassen die Forscher den Knochenschall-Lautsprecher ein Signal abspielen, das ein breites Frequenzspektrum abdeckt.

Das durch den Schädelknochen veränderte Audiosignal nehmen sie dann mit dem in der Brille integrierten Mikrofon auf. „Aus dieser Aufnahme extrahieren wir mit zwei speziellen Rechenverfahren die Identifikationsmerkmale und setzen diese zu einer Art digitalem Fingerabdruck zusammen. Dieser ist charakteristisch für jede Person und wird dann abgespeichert“, sagt Bulling.

Setzt von nun an jemand den Brillencomputer auf, startet der Vorgang automatisch. Das Signal schallt durch den Schädel, das Mikrofon nimmt es auf. Passt der aktuelle Audio-Fingerabdruck zu dem abgespeicherten, bekommt die Person Zugriff auf die Brille.

„Es reicht, wenn das Signal eine Sekunde lang abgespielt wird. Damit sind wir gut eine halbe Sekunde schneller als klassische, nicht-biometrische Verfahren, die auf mobilen Endgeräten den rechtmäßigen Nutzer erkennen“, sagt Bulling. „Der entscheidende Vorteil des Verfahrens ist jedoch“, so Bulling weiter, „dass die Erkennung des Nutzers in Zukunft auch implizit stattfinden könnte, beispielsweise mittels der Töne, die das Gerät ohnehin als Feedback für den Nutzer abspielt.“

Zusammen mit seinen Kollegen hat er das auf den Namen „SkullConduct“ getaufte Verfahren an zehn Personen getestet. Diese wurden dabei mit einer Genauigkeit von 97 Prozent erkannt. „Allerdings haben wir diese ersten Tests noch in einem Raum ohne Hintergrundgeräusche durchgeführt“, erklärt Bulling.

Details zum System berichten die Forscher auf der gerade stattfindenden Konferenz „Human Factors in Computing Systems (CHI)“ in Kalifornien und beschreiben diese in der dort angenommenen Forschungsarbeit „SkullConduct: Biometric User Identification on Eyewear Computers Using Bone Conduction Through the Skull“.

Als nächstes will der Saarbrücker Informatiker gemeinsam mit seinen Kollegen untersuchen, ob ihre Methode auch im Alltag funktioniert. Sie wollen auch den Frequenzbereich von Ultraschall untersuchen, der den Vorteil hätte, dass der Anwender das Signal nicht hören würde. Die Forscher können sich ihr Verfahren grundsätzlich auch am Smartphone vorstellen.

„Wenn das Smartphone über einen entsprechend platzierten Knochenschalllautsprecher und ein Mikrofon verfügt und der Anwender es mit Knochenkontakt an seinen Schädel drückt, könnte es möglicherweise sogar mit dem normalen Klingelton des Smartphones funktionieren“, sagt Bulling.

Weitere Informationen:
Video: https://www.youtube.com/watch?v=BX1-RE9krSM

„SkullConduct: Biometric User Identification on Eyewear Computers Using Bone Conduction Through the Skull“: https://perceptual.mpi-inf.mpg.de/files/2016/01/schneegass16_chi.pdf

Fragen beantwortet:
Dr. Andreas Bulling
Perceptual User Interfaces Group
Max-Planck-Institut für Informatik
Tel. +49 681 932 52128
E-Mail: bulling@mpi-inf.mpg.de

Redaktion:
Gordon Bolduan
Kompetenzzentrum Informatik Saarland
Universität des Saarlandes
Telefon: +49 681 302-70741
E-Mail: bolduan@mmci.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

https://perceptual.mpi-inf.mpg.de/files/2016/01/schneegass16_chi.pdf
https://www.youtube.com/watch?v=BX1-RE9krSM

Thorsten Mohr | Universität des Saarlandes

Weitere Berichte zu: Biometric Google Glass Informatik Mikrofon Passwort Schädelknochen Smartphone Tonsignal

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Smart Glasses Guide: Neues Tool zur Auswahl von Datenbrillen und Anwendungen
15.10.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Einzigartige Infrastruktur für Deep Learning – DFKI erhält ersten NVIDIA DGX2 Supercomputer Europas
11.10.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nanodiamanten als Photokatalysatoren

18.10.2018 | Materialwissenschaften

Schichten aus Braunschweig auf dem Weg zum Merkur

18.10.2018 | Physik Astronomie

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics