Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computerspeicher: Magnetisches Moment maximiert Memory

10.07.2012
SimulationsexpertInnen der FH St. Pölten "spinnen" neue Datenspeicher

Nanomagnetische Bauteile könnten die Zukunft der zentralen Speichermöglichkeiten von Computern bedeuten. Wesentlich dafür ist die Nutzung der als "magnetischer Spin" bezeichneten Eigenschaft bestimmter Metalle. Das hat die Analyse von nanomagnetischen Prozessen durch modernste Simulationstechniken an der Fachhochschule St. Pölten ergeben. Heute werden neueste Erkenntnisse zu nanomagnetischen Potentialen und Anwendungsbeispiele dieser Technologie auf der 19th International Conference on Magnetism in Korea der Fachwelt vorgestellt.

Maximale Leistungssteigerung - höher, schneller, weiter - die Nachfrage nach miniaturisierten Technologien, die Rechenprozesse schneller und energieeffizienter machen und größere Speichervolumina erlauben, ist enorm. "Da stellt sich die Frage, wie die Zukunft des als RAM bezeichneten Arbeitsspeichers von Computern oder auch der Festplatte aussehen könnte. Die Spin-Elektronik und Nanostrukturen sind dabei große Hoffnungsträger, da sie die Konstruktion neuartiger magnetischer Datenspeicher erlauben", meint Prof. Dr. Thomas Schrefl, Leiter des Master-Studiengangs Industrial Simulation an der FH St. Pölten.

Die Nutzung des Nanomagnetismus würde das derzeit flüchtige Gedächtnis des Arbeitsspeichers in ein elefantenhaftes Langzeitgedächtnis verwandeln. Und die Speicherkapazität von Festplatten ist noch lange nicht ausgereizt, wenn man das nanomagnetische Verhalten ihrer Komponenten optimal ausnützt. Die Berechnung und Analyse der dafür notwendigen magnetischen Prozesse ist allerdings eine Herausforderung an die Rechenleistung, die nur durch modernste Simulationstechnik zu meistern ist. An der FH St. Pölten wird diese Herausforderung nun mit einem innovativen Simulationsmodell angenommen.

1:0 FÜR DIE SIMULATION

Mit diesem Modell lässt sich das Verhalten von magnetischen Nanostrukturen, also mikroskopisch kleinen magnetischen Teilchen in Schichtsystemen, analysieren. Wesentlich ist dabei, das "Umschalten" von elektromagnetischen Elementen darstellen zu können. Denn dieses liegt dem Prinzip, digitale Information in binären Codes von "1" und "0" darzustellen, zugrunde. An der FH St. Pölten werden dazu nun unterschiedliche Simulationstechniken wie stochastische Optimierungsalgorithmen und Randelementeverfahren zur Berechnung magnetischer Felder mit der sogenannten Finite-Elemente-Methode kombiniert: "Dabei handelt es sich um eine Simulationsmethode, die auch in der Statik und der Mechanik für die Konstruktion von Hochhäusern und Brücken eingesetzt wird. Diese Technologie kann man auch auf magnetische Teilchen anwenden, um sich magnetische Spin-Eigenschaften von Elektronen anzuschauen", erläutert Prof. Schrefl. Und gerade dieser Spin könnte der Schlüssel zu revolutionären Fortschritten bei der Entwicklung der zentralen Computerspeicher sein.

So funktionieren selbst die leistungsfähigsten Arbeitsspeicher (RAM - Random Access Memory) noch heute nach dem ursprünglichen Prinzip, das die Speicherung auf Grundlage elektrischer Ladung vorsieht. Hohe Ladung = 1, niedrige Ladung = 0. Ist der Strom weg, passiert aber auch das Gleiche mit der gespeicherten Information. Anders bei der Nutzung des magnetischen Spins von Elektronen. Dieser ist auch ohne Strom stabil und kennt sogar vier Zustände: links, rechts, oben, unten. Neben stromunabhängiger Speicherung ist durch die Nutzung dieser vier Zustände auch eine höhere Speicherdichte möglich.

MAGNETISCHE RAM-POWER

Erste Umsetzung dieses Prinzips sind sogenannte MRAMs (Magnetic Random Access Memory). Diese basieren auf mikroskopisch kleinen, zirka 40x40 Nanometer großen, magnetischen Elementen, deren Verhalten das Team um Schrefl simuliert. Dieser meint dazu: "Unser Ziel ist es, bei den Umschaltprozessen eine Geschwindigkeit von 10 Bit pro Nanosekunde zu erreichen. Doch dieses Ziel ist nur bei einem optimalen Design unter gleichzeitig effizienter Nutzung der Materialeigenschaften möglich." Gleiches gilt für die Optimierung des Festplattendesigns, das bereits auf magnetische Prozesse aufbaut, diese aber laut Prof. Schrefl bei Weitem nicht zu ihrem vollen Potential ausnützt.

Auf der 19th International Conference on Magnetism vom 8. - 13. Juli in Korea werden nun unter dem Motto "Magnetic Memories" von Prof. Schrefl solche Anwendungsgebiete der von ihm entwickelten Simulationsverfahren vorgestellt. Deren Nutzung, davon ist der Experte überzeugt, erlaubt es, die Computer-Power des 21. Jahrhunderts zu maximieren - ohne den aufwändigen Bau zahlloser Prototypen.

Über die Fachhochschule St. Pölten
Die Fachhochschule St. Pölten ist Anbieterin praxisbezogener und leistungsorientierter Hochschulausbildung in den Themengebieten Medien, Informatik, Verkehr, Gesundheit und Soziales. In mittlerweile 16 Studiengängen werden rund 2.000 Studierende betreut. Neben der Lehre widmet sich die FH St. Pölten intensiv der Forschung. Die wissenschaftliche Arbeit erfolgt innerhalb der Kompetenzfelder Medientechnik, Medienwirtschaft, IT-Sicherheit, Simulation, Schienenverkehr, Gesundheit und Soziales. Es erfolgt ein stetiger Austausch zwischen Studiengängen und Instituten, in denen laufend praxisnahe und anwendungsorientierte Forschungsprojekte entwickelt und umgesetzt werden.
Wissenschaftlicher Kontakt:
Prof. Dr. Thomas Schrefl
Fachhochschule St. Pölten
Leiter des Master-Studiengangs
Industrial Simulation
Matthias-Corvinus-Str. 15
3100 St. Pölten
T +43 / (0)2742 / 313 228 - 313
E thomas.schrefl@fhstp.ac.at
W http://www.fhstp.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D
Weitere Informationen:
http://www.fhstp.ac.at

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht LTE-V2X-Direktkommunikation für mehr Verkehrssicherheit
15.11.2018 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

nachricht Elektronische Haut zeigt Weg nach Norden - HZDR-Forscher verleihen Menschen mit Sensoren Magnetsinn
15.11.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics