Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematik sorgt im OP für den treffsicheren Schnitt

05.07.2007
Mathematiker und Hirnchirurgen der Universität Bonn wollen die Arbeit am OP-Tisch verbessern. Dazu soll eine Kamera den Eingriff überwachen - beispielsweise bei epilepsiechirurgischen Operationen oder der Entfernung eines Tumors. Heute fertigen Mediziner im Vorfeld detaillierte Aufnahmen des Operationsfelds an.

Darauf basierend wird im OP-Mikroskop die Lage der Geschwulst eingeblendet. Der Chirurg weiß daher im Prinzip genau, wo er schneiden muss. Die Position des Gewebes kann sich aber mit jedem Schnitt ändern. In komplizierten Fällen müssen die Ärzte den Eingriff daher unterbrechen, um neue Bilder zu machen. Hier greift die Idee der Bonner Forscher: Dabei soll mittelfristig ein Computer auf den Kamerabildern erkennen, wie sich das Gewebe während der Operation deformiert. Mit diesen Informationen lässt sich dann die Position des Tumorbildes im Mikroskop korrigieren.

Gerade bei Hirnoperationen ist es wichtig, dass der Chirurg sein Skalpell an der richtigen Stelle ansetzt. Denn ein falscher Schnitt kann gravierende Folgen haben, etwa wenn Sprachzentrum oder Gedächtnis geschädigt werden. Oft ist jedoch mit bloßem Auge nicht zu erkennen, wo das Gewebe krank ist - so beispielsweise bei der Epilepsie.

Bei vielen Epilepsie-Patienten entspringen die Krampfanfälle immer wieder derselben Region im Gehirn. Wird diese Stelle entfernt, verschwinden die Anfälle - im Idealfall für immer. Oft lässt sich jedoch nicht genau sagen, wo der Epilepsie-Herd sitzt. In diesem Fall öffnen die Bonner Hirnchirurgen den Schädel und legen eine rechteckige Silikonfolie auf die Hirnoberfläche. Auf der Folie sind in regelmäßigem Abstand bis zu 64 Elektrodenkontakte angebracht. Nach der Operation wird der Patient in die Klinik für Epileptologie unter Leitung von Professor Dr. Christian Elger verlegt. Dort zeichnen die Ärzte über die Kabel, die der Folie entspringen, in den Wochen nach dem Eingriff die Hirnströme ihres Patienten auf. Beim nächsten Krampfanfall lässt sich so beispielsweise feststellen, wo er entstand. Zusätzlich durchlaufen die Patienten eine aufwändige Testreihe: Die Ärzte schicken in jeden einzelnen Kontakt einen schwachen Strompuls. Dabei testen sie, wie sich die Reizung auf den Patienten auswirkt - ob er beispielsweise kurzzeitig Schwierigkeiten hat, sich zu artikulieren. "Wir erhalten eine Art Karte, auf der die Hirnfunktionen rund um den Anfallsherd verzeichnet sind", erklärt der Bonner Hirnchirurg Professor Dr. Carlo Schaller.

Punktlandung mit dem Skalpell

Bevor sie die Folie wieder entnehmen, erfassen die Mediziner mit dem Computertomographen die genaue Position der Elektroden. Bei der Entfernung des Epilepsie-Herdes können sie so die Lage der Elektrodenkontakte in das OP-Mikroskop einblenden lassen. "Dort sehen wir dann farblich markiert den Anfallsherd, aber auch die Regionen, die wir auf keinen Fall schädigen dürfen", sagt Schaller. Problem ist nur, dass sich das Gehirn beim Eingriff verändert - und zwar häufig schon, sobald der Schädel geöffnet wird. So kann sich das Gewebe aufgrund der Druckentlastung ausdehnen. Mit jedem Stück Gehirnsubstanz, die entnommen wird, verändert sich zudem die Situation. Das erschwert es den Chirurgen, mit dem Skalpell stets eine Punktlandung hinzulegen.

Schaller ist Leitender Oberarzt an der Klinik für Neurochirurgie der Universität Bonn. Um das Problem in den Griff bekommen, baut er auf das Know-how eines Mathematikers: Professor Dr. Martin Rumpf vom Institut für numerische Simulation möchte dazu Bilddaten aus dem OP-Mikroskop nutzen. "Wir haben einen Algorithmus entwickelt, der Fotos aus dem Mikroskop mit den vor der Operation gemachten Tomographiebildern in Deckung bringt", erklärt Rumpf.

Das Problem ist nicht trivial. Schließlich sind auf Tomographie-Bildern ganz andere Details zu sehen als auf herkömmlichen Fotos. So fehlen beispielsweise die Blutgefäße, die im Mikroskopbild deutlich rot hervorstechen. Außerdem kann man die Aufnahmen nicht einfach übereinander schieben, bis sie passen. "Da sich das Gewebe während des Eingriffs lokal unterschiedlich ausdehnt, sind die Mikroskop-Fotos im Vergleich zu den Tomographie-Bildern verzerrt", sagt der Mathematiker. Das Problem ist es, diese Unterschiede so auszugleichen, dass dieselben Strukturen in Deckung kommen. Der Fachmann spricht von "Registrierung". "Wir wollen die während der Operation aufgenommenen Mikroskopiebilder mit den tomographischen Aufnahmen registrieren", erklärt Rumpf. "Wenn uns das gelingt, können wir die eingeblendete Position des Anfallsherdes und der benachbarten Hirnrindenfunktionen korrigieren." Für Patienten und Ärzte würde der Eingriff damit sicherer.

In ersten Tests hat sich der Registrierungs-Algorithmus schon bewährt. Für die Weiterentwicklung der Methode hat die DFG gerade ein zweijähriges Projekt bewilligt. Der Schritt in die Praxis sei allerdings noch weit, betonen beide Wissenschaftler. "Als Mathematiker liefern wir die Methode", sagt Rumpf. "Die technische Umsetzung ist dann Sache von Spezialisten aus der Medizintechnik."

Kontakt:
Professor Dr. Carlo Schaller
Klinik für Neurochirurgie der Universität Bonn
Telefon: 0228/287-16521
E-Mail: carlo.schaller@ukb.uni-bonn.de
Professor Dr. Martin Rumpf
Institut für Numerische Simulation der Universität Bonn
Telefon: 0228/73-7866
E-Mail: martin.rumpf@ins.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Anfallsherd Chirurg Gewebe Hirnchirurg Mathematik OP-Mikroskop

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Fraunhofer IPT und Ericsson starten mit 5G-Industry Campus Europe größtes industrielles 5G-Forschungsnetz Europas
13.12.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase
11.12.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das feine Gesicht der Antarktis

Eine neue Karte zeigt die unter dem Eis verborgenen Geländeformen so genau wie nie zuvor. Das erlaubt bessere Prognosen über die Zukunft der Gletscher und den Anstieg des Meeresspiegels

Wenn der Klimawandel die Gletscher der Antarktis immer rascher Richtung Meer fließen lässt, ist das keine gute Nachricht. Denn dadurch verlieren die gefrorenen...

Im Focus: Virenvermehrung in 3D

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Titin in Echtzeit verfolgen

13.12.2019 | Biowissenschaften Chemie

LogiMAT 2020: Automatisierungslösungen für die Logistik

13.12.2019 | Messenachrichten

Das feine Gesicht der Antarktis

13.12.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics