Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissen, was im Untergrund passiert

15.03.2018

TU Darmstadt untersucht Abbau von giftigen Produkten der Trinkwasser-Infiltration

Meerwasserentsalzung ist unverzichtbar geworden im Kampf gegen Dürre. Speichern lässt sich das gewonnene Trinkwasser unter der Erde, doch dabei entstehen giftige Nebenprodukte. Die nimmt ein Team um Professor Christoph Schüth aus dem Fachbereich Material- und Geowissenschaften der TU Darmstadt mit einem innovativen Analyseverfahren in den Blick. Das Projekt MAR-DSW steht nun vor dem ersten Feldeinsatz.


Prof. Schüth, Dr. Sakaguchi-Söder und Doktorand Abrha (v.l.) untersuchen toxische Stoffe im Wasser. Bild: Katrin Binner

Israel hat der Dürre den Kampf angesagt. Fünf Meerwasserentsalzungsanlagen generieren pro Jahr um die 600 Millionen Kubikmeter Süßwasser, etwa 70 Prozent des Verbrauchs der privaten Haushalte. Weil die gigantischen Anlagen nicht flexibel reguliert werden können, hat das Land inzwischen in Zeiten geringeren Bedarfs und bei Wartungsarbeiten an den Leitungsnetzen zu viel von dem kostbaren Nass.

„Man braucht einen Zwischenspeicher“, sagt Christoph Schüth, Professor für Angewandte Geowissenschaften an der TU Darmstadt. Dafür wird das Wasser seit einiger Zeit in Aquifere eingespeist, grundwasserführende Bodenschichten, und bleibt dort, bis es wieder entnommen wird. Das einfache Prinzip hat allerdings einen Nachteil: Das entsalzte Wasser ist chloriert. Sickert es durchs Erdreich, reagiert das Chlor mit organischen Stoffen im Boden und bildet giftige Verbindungen wie zum Beispiel Chloroform.

Im deutsch-israelischen Verbundprojekt MAR-DSW wollen Schüth, Dr. Kaori Sakaguchi-Söder und der Doktorand Behane Abrha herausfinden, was mit diesen Trihalomethanen im Wasser passiert.
Sie nutzen dafür das Verfahren der Isotopen-Analyse, die Sakaguchi-Söder im Rahmen ihrer Doktorarbeit weiter entwickelte und für die Analysen in Israel maßschneiderte.

„Die Methode ist eine Spezialität der TU, wir können die Isotopie aller Elemente in den Trihalomethanen ermitteln“, sagt Sakaguchi-Söder. Dafür werden Wasserproben an verschiedenen Stellen des Aquifers genommen und in einen Gaschromatographen eingebracht, der die enthaltenen Moleküle „zerschießt“. Anschließend können die Forschenden die Isotopie der Bruchstücke untersuchen.

Das ist zum Beispiel bedeutsam, weil sich Mikroben beim Abbau der schädlichen Stoffe zuerst über leichtere Isotope hermachen. Sind überwiegend schwere Isotope in der Probe, zeigt das, dass der Abbau der gefährlichen Nebenprodukte schon weit fortgeschritten ist. „Mit der Isotopenanalyse kann man Aussagen treffen, ob, wie schnell und an welchen Stellen der Bodenpassage ein Stoff abgebaut wurde“, erklärt Schüth.

Um die gewonnenen Messdaten korrekt interpretieren zu können, simuliert das Team auch den mikrobiologischen Abbau unter der Erde im Labor. Zur Halbzeit des Forschungsprojektes steht das Verfahren: „Die Methode ist bereit für den Einsatz“, sagt Sakaguchi-Söder. Im April werden in Israel Proben gezogen, die dann in Darmstadt analysiert werden. „Die Daten fließen in ein hydrogeologisches Standortmodell“, sagt Schüth. „Wir wissen dann ganz genau, was im Untergrund passiert.“

Das Untersuchungsverfahren, das an der TU entwickelt wurde, könne weltweit zum Einsatz kommen, überall, wo Wasser in Aquiferen gelagert werde, sagt Schüth. Die Belastung mit Trihalomethanen kann je nach Bodenbeschaffenheit von Standort zu Standort unterschiedlich ausfallen, aber dank MAR-DSW verstehen Wissenschaft und Wasserwirtschaft die grundlegenden Prozesse, die bei unterschiedlichen Rahmenbedingungen der Einspeisung zum Tragen kommen.

„Um der zunehmenden Wasserknappheit mit Entsalzung begegnen zu können, ist entscheidend, dass künstliche Grundwasseranreicherung als sicheres und nachhaltiges Instrument etabliert wird“, sagt Schüth. „Dazu leisten wir einen Beitrag.“

Hintergrund
Das Verbundprojekt „Künstliche Grundwasseranreicherung als nachhaltige Lösung zur Speicherung von entsalztem Meerwasser“ (MAR-DSW) baut auf dem Projekt MARSOL auf, das die TU koordinierte. MAR-DSW wird im Rahmen der deutsch-israelischen Kooperation in der Wassertechnologieforschung vom Bundesministerium für Bildung und Forschung (BMBF) sowie vom israelischen Wissenschaftsministerium (MOST) gefördert (Förderkennzeichen 02WIL1386). Es startete am 1. Juni 2016, hat eine Laufzeit von drei Jahren und ein Volumen von 250.000 Euro. Israelische Forschungspartner sind die Ben-Gurion University, das Volcani Center der Agricultural Research Organization sowie der Wasserversorger Mekorot.

Kontakt
Fachgebiet Hydrogeologie
Prof. Dr. Christoph Schüth
Telefon: 06151/16-22090
E-Mail: schueth@geo.tu-darmstadt.de

Weitere Informationen:

Diese und weitere spannende Geschichten aus der laufenden Forschung an der TU Darmstadt finden Sie in der neuesten Ausgabe der „hoch3FORSCHEN“: https://www.tu-darmstadt.de/vorbeischauen/publikationen/forschung/hoch3_forschen...

Bettina Bastian | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.tu-darmstadt.de/vorbeischauen/aktuell/einzelansicht_201792.de.jsp
http://www.tu-darmstadt.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Januskopf des südasiatischen Monsuns
15.06.2018 | Max-Planck-Institut für Chemie

nachricht Was das Eis der West-Antarktis vor 10.000 Jahren gerettet hat, wird ihr heute nicht helfen
14.06.2018 | Potsdam-Institut für Klimafolgenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schnelle Wasserbildung in diffusen interstellaren Wolken

25.06.2018 | Physik Astronomie

Gleisgenaue Positionsbestimmung für automatisierte Bahnanwendungen

25.06.2018 | Informationstechnologie

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics