Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Als Österreich in den Tropen lag

25.05.2011
Im Rahmen eines internationalen Programms der UNESCO untersuchen Geowissenschafter der Universität Wien um Michael Wagreich die Kreidegesteine der "Neuen Welt" in den niederösterreichischen Kalkalpen. Sie analysieren die Auswirkungen von Klimazyklen und Meeresspiegelschwankungen auf die kreidezeitliche Umwelt. Bereits jetzt steht fest: Vor 80 Millionen Jahren lag Niederösterreich in den Tropen.

Im südlichen Niederösterreich bei Maiersdorf an der Hohen Wand – der sogenannten "Neuen Welt" – finden sich kohleführende Ablagerungsgesteine aus der Kreidezeit, die vor rund 145 Mio. Jahren begann und vor ca. 65 Mio. Jahren endete. Michael Wagreich und sein Team vom Department für Geodynamik und Sedimentologie der Universität Wien untersuchen diese Kohleschichten in dem UNESCO-Programm "Rapid Environmental/Climate Change in the Cretaceous Greenhouse World: Ocean-Land Interactions" auf Bildungsbedingungen und Umweltänderungen während der Ablagerungszeit.

Palmen und Magnoliengewächse

Damals befand sich das Gebiet in einem küstennahen Meeresbereich des Tethys-Ozeans, und es herrschte ein tropisch-subtropisches Treibhausklima. "Meeresablagerungen wechselten sich mit Landablagerungen ab", erklärt Wagreich: "Zyklische Klimaänderungen bewirkten Meeresspiegelschwankungen in der Größenordnung von mehreren Metern."

In randlichen Sümpfen und Feuchtgebieten fand eine subtropische Flora ideale Bedingungen vor, u.a. wuchsen in Niederösterreich Palmen, Palmfarne sowie Schraubenbaum- und Magnoliengewächse ("Grünbach Flora"). "In diesen Sumpfgebieten wurden im Laufe von Jahrmillionen durch Meeresüberflutungen und Trockenfallen Sedimentabfolgen abgelagert. Es wechseln sich Kohleflöze mit Schichten aus Ton, Sandstein und Konglomerat ab, einem zum Großteil aus Kies bestehenden Sedimentgestein", beschreibt Wagreich.

Mit dem Bagger in die Kreidezeit

Die kohleführenden Gesteine sind im Untersuchungsgebiet nahezu komplett durch Vegetation und Schutt bedeckt und können daher nicht an der Oberfläche untersucht werden – auch die bis 1965 bestehenden Kohlenbergwerke sind nicht mehr zugänglich. "Daher haben wir Ende April 2011 mit Hilfe eines Baggers an mehreren Stellen insgesamt 128 Meter lange und bis zu vier Meter tiefe Untersuchungsgräben – sogenannte Schurfgräben – angelegt", erzählt Wagreich: "Nur dadurch konnten die Schichten genau untersucht, eingemessen sowie zentimeterweise beprobt werden." Die Arbeiten wurden mit freundlicher Genehmigung der GrundbesitzerInnen und dem Land Niederösterreich durchgeführt. Nach der Beprobung wurden die Schurfgräben sofort wieder zugeschüttet sowie die Boden- und Vegetationsbedeckung wiederhergestellt.

Meeresspiegelanstieg vor 80 Mio. Jahren

"Wir haben es hier mit stark wechselnden Ablagerungsbedingungen zu tun", so Wagreich. Geochemische Untersuchungen zeigen Anreicherungen von Elementen wie etwa Bor, die eher marine Ablagerungen anzeigen, welche mit terrestrischen, kohle- und pflanzenführenden Schichten "wechsellagern": "Eine Lage mit Einzelkorallen direkt über Kalken mit Süßwasseralgen zeigt dabei den extrem raschen Wechsel von nicht-marinen zu marinen Ablagerungen, möglicherweise die Folge eines plötzlichen Meeresspiegelanstiegs vor zirka 80 Millionen Jahren", erklärt Projektmitarbeiter Erich Draganits.

Altersbestimmung mit Plankton

Ein spezielles Problem, das mit den Proben aus den Schurfgräben geklärt werden soll, ist das genaue Alter der Sedimente. "Die kohleführenden Tone und Sandsteine, die wir in Maiersdorf untersuchen, eignen sich nur bedingt für eine absolute Datierung", berichtet Michael Wagreich. Bei der Altersbestimmung greifen die Forscher auf Mikro- und Nannofossilien zurück. Dabei handelt es sich um mikroskopisch kleine Planktonreste, die aus den Tonschichten im Labor gewonnen und anschließend mithilfe eines Rasterelektronen-Mikroskops bestimmt werden. Diese Kleinstfossilien sind typisch für bestimmte Zeitabschnitte. Zusätzlich lieferten Strontium-Isotopendaten einen ersten Hinweis auf das Alter der Gesteine: "Wir konnten damit den Sedimentationsbeginn dieser Ablagerungen auf 83,5 Millionen Jahre einengen – den Beginn des Zeitalters Campanium, also die Späte Kreidezeit", so Wagreich.

Webseite des Departments für Geodynamik und Sedimentologie: http://geologie.univie.ac.at/

Wissenschaftlicher Kontakt
Ao. Univ.-Prof. Dr. Michael Wagreich
stv. Leiter des Departments für Geodynamik und Sedimentologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-534 65
michael.wagreich@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | idw
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter
21.09.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Warnung vor Hybris bei CO2-Entzug
20.09.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics