Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nord-Patagonien: ein "Schnappschuss" aus dem Erdinneren

08.07.2009
Eine sensationelle Entdeckung machten der Erdwissenschafter Theodoros Ntaflos und sein Team von der Fakultät für Geowissenschaften, Geographie und Astronomie gemeinsam mit argentinischen KollegInnen von der Universidad del Sur in Baíha Blanca: Sie fanden in Nord-Patagonien seltene Erdmantelgesteine, so genannte Granat-Peridotite, aus 90 Kilometer Tiefe. Durch die mineralische Zusammensetzung dieser Gesteine können die Forscher Rückschlüsse auf die Plattentektonik Patagoniens ziehen.

Das Spezialgebiet des Petrologen Theodoros Ntaflos ist der sogenannte lithosphärische Erdmantel, der sich direkt unter der Erdkruste in circa 50 bis 100 Kilometer Tiefe befindet. Durch die Untersuchung des Erdmantels wollen LithosphärenforscherInnen den detaillierten Aufbau der Erde klären und plattentektonische Phänomene erkunden. "Aus dem Erdmantel ist die Erdkruste entstanden, auf der wir jetzt leben", sagt Ntaflos.

Aber wie erforscht man ein Gebiet, das 50 bis 100 Kilometer unter der Erdoberfläche liegt, und zu dem es keinen direkten Zugang gibt? "Die einzige Möglichkeit, den Erdmantel, seine Zusammensetzung und die dort stattfindenden Prozesse zu erforschen ist - neben seismischen Methoden - der Weg über die Erdmantelgesteine, die man an der Erdoberfläche findet", so Ntaflos.

Xenolithe: "Blinde Passagiere" aus der Tiefe
Erdmantelgesteine werden Xenolithe genannt (xeno = griech. fremd), weil sie in genetisch fremde, vulkanische Gesteine eingeschlossen an die Oberfläche transportiert werden. "Der Erdmantel ist nicht flüssig, sondern befindet sich grundsätzlich in festem Zustand", sagt Theodoros Ntaflos: "Nur wenn sich die lokalen Bedingungen verändern - zum Beispiel durch Temperaturerhöhung, Druckverminderung oder Wasserzufuhr - kann es zu einer Aufschmelzung kommen und zähflüssige Lava mit basaltischer Zusammensetzung entstehen. Diese Schmelze drängt nach oben, weil sie leichter ist als das umliegende Gestein."

Nach der Aufschmelzung im Erdmantel reißt der Lavastrom auf seinem Weg nach oben Fragmente des umliegenden festen Mantelgesteins mit. "Dieses mitgerissene Material sind die Xenolithe", erklärt der Petrologe: "Die basaltischen Schmelzen mit den eingeschlossenen Xenolithen erreichen die Erdoberfläche innerhalb von einigen Stunden bis Tagen, was geologisch gesehen eine hohe Geschwindigkeit ist." Aufgrund des hohen Tempos haben die eingeschlossenen Gesteine keine Zeit, mit den umliegenden Basalten (vulkanischen Gesteinen) zu reagieren. "Daher stellen sie für uns Momentaufnahmen aus der Tiefe dar, die sozusagen als 'blinde Passagiere' zu uns kommen."

Granat-Peridotite
Die sogenannten Granat-Peridotite, die Ntaflos und sein Team in Nord-Patagonien entdeckt haben, sind besonders selten - "und zwar deshalb, weil sie aus einer enormen Tiefe von ungefähr 90 Kilometern stammen, in der eine Temperatur von 1.300° Celsius herrscht." Aufgrund ihrer sehr hohen Dichte sind sie schlicht zu schwer und schaffen es deshalb meist nicht bis an die Erdoberfläche. "Weltweit gab es bisher nur fünf Granat-Peridotit-Funde", so Ntaflos: "In Sibirien, China, Australien und zwei Funde in Argentinien, wobei unser Fund der aktuellste ist."
Fragen der Plattentektonik in Patagonien
Über die mineralische Zusammensetzung der Erdmantelgesteine aus Nord-Patagonien können Theodoros Ntaflos und sein Team Rückschlüsse auf die Plattentektonik Patagoniens ziehen. "Es gibt Hinweise darauf, dass Patagonien keine einheitliche Kontinentalplatte ist, sondern aus mehreren Mikroplatten besteht, und das untersuchen wir", so Ntaflos. Die bisherigen Forschungsergebnisse haben der Erdwissenschafter und sein Team kürzlich im "Journal of Petrology" veröffentlicht.
Geochemische Analyse
Die zur genauen Charakterisierung nötigen geochemischen Analysen an den Gesteinsproben wurden sämtlich am Department für Lithosphärenforschung der Universität Wien durchgeführt. Die detaillierte Zusammensetzung der Minerale wurde mit Hilfe verschiedener moderner Methoden, wie der "Elektronenstrahlmikrosonde" und der "Laser Ablation Induktiv gekoppelten Plasma-Massenspektrometrie" bewerkstelligt. Das Alter des sensationellen Gesteinfunds wurde mit Hilfe der "Thermischen Ionisations-Massenspektrometrie" (TIMS) festgestellt.
Kontakt:
Ao. Univ.-Prof. Dr. Theodoros Ntaflos
Department für Lithosphärenforschung
Universität Wien
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-533 14
F +43-1-4277-9 543
theodoros.ntaflos@univie.ac.at
Rückfragehinweis:
Mag. Alexandra Frey
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexandra.frey@univie.ac.at

Alexandra Frey | idw
Weitere Informationen:
http://www.univie.ac.at/175

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Gebirge in Bewegung
14.08.2018 | Technische Universität München

nachricht Künstliche Gletscher als Antwort auf den Klimawandel?
09.08.2018 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics