Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochdrucktechnologie bietet Einblicke in die Planetengeschichte

16.02.2015

Neue Forschungsarbeiten reproduzieren die extremen Druck- und Temperaturverhältnisse bei der Planetenentstehung.

Eine internationale Forschungsgruppe hat im Labor mit lasergestützter Hochdrucktechnologie die Druckverhältnisse nachgeahmt, die tief im Inneren von Riesenplaneten und von „Supererden“ - also von großen erdähnlichen Planeten außerhalb des Sonnensystems – herrschen.

Zudem hat sie Druckverhältnisse erzeugt, die zur Entstehung erdähnlicher Planeten führen können, wenn mehrere Himmelskörper aufeinander prallen. An den Forschungsarbeiten, die kürzlich im Wissenschaftsmagazin „Science“ vorgestellt wurden, waren auch Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth sowie zwei Bayreuther Doktoranden beteiligt.

Will man zu neuen Erkenntnissen über die Struktur, die Zusammensetzung und die Entwicklung der bisher entdeckten Riesenplaneten und Supererden vordringen, ist eine möglichst genaue Kenntnis der Eigenschaften und Verhaltensweisen von Eisen, Magnesiumoxid und Silikaten erforderlich. Denn vor allem aus diesen Materialien setzt sich das Innere von ungewöhnlich großen Himmelskörpern zusammen.

Insbesondere ist es wichtig zu wissen, wie diese Hauptbestandteile sich bei extrem hohen Drücken und Temperaturen verhalten. Denn die unter Extrembedingungen ausgelösten Schmelzprozesse haben einen entscheidenden Einfluss auf die physikalische und chemische Entwicklung des Planeteninneren. Sobald ein erdähnlicher Planet entstanden ist und seine Bestandteile sich noch im geschmolzenen Zustand befinden, differenzieren sich die Materialien des Planeten aus: in einen metallischen Kern, einen Mantel aus Felsgestein und eine umgebende Atmosphäre. Diese Ausdifferenzierung wird durch Gravitationskräfte ermöglicht und vorangetrieben.

Mithilfe der lasergetriebenen Schockkompression und einer ultraschnellen Diagnostik hat die Forschungsgruppe das Schmelzverhalten von Siliciumdioxid (SiO2) genauer bestimmt. Der Schmelzpunkt ist bei rund 5 Mio. Atmosphären erreicht. Ein vergleichbar hoher Druck ist im Inneren einer Supererde, die das Fünffache der Erdmasse besitzt, an der Grenze vom Mantel zum Kern gegeben; und ebenso auch im Inneren der Planeten Uranus und Neptun.

Die Forschungsarbeiten, die zu diesen Ergebnissen geführt haben, wurden im Lawrence Livermore National Laboratory (LLNL) in Kalifornien geplant. Anschließend hat eine Forschungsgruppe mit Prof. Dr. Natalia Dubrovinskaia (Labor für Kristallographie der Universität Bayreuth) und Prof. Dr. Leonid Dubrovinsky (Bayerisches Geoinstitut der Universität Bayreuth) die Experimente an der University of Rochester in den USA realisiert. Dabei wurden winzige Proben mit sehr großen Mengen von Lichtenergie bestrahlt, die zeitgleich von zahlreichen Lasern erzeugt wurden.

Die Experimente waren durch wegweisende Forschungsarbeiten am Bayerischen Geoinstitut (BGI) möglich geworden. Hier ist einer Forschungsgruppe, der neben Prof. Dubrovinskaia und Prof. Dubrovinsky auch die Bayreuther Doktoranden Ana Černok und Stephan Blaha angehörten, ein Durchbruch auf dem Gebiet der Kristallzüchtung gelungen. Mit den am BGI vorhandenen Technologien der Hochdruckforschung haben sie mehrere millimetergroße durchsichtige Polykristalle sowie Einzelkristalle von Stishovit gezüchtet. Hierbei handelt es sich um eine Form des Siliciumoxids, die sich durch eine hohe Dichte auszeichnet und normalerweise nur in sehr kleinen Mengen in der Nähe von Meteoritenkratern vorkommt.

„Die in Bayreuth, Livermore und Rochester erzielten Messdaten unterstützen insgesamt die Vermutung, dass Mantelsilikate einerseits und der metallische Planetenkern andererseits bei Drücken oberhalb von 300 bis 500 Gigapascal vergleichbare Schmelzpunkte haben“, erklärt Prof. Dubrovinsky und fährt fort: „Es ist gut möglich, dass große felsige Planeten in ihrem Inneren sehr alte Ozeane aus Magma – nämlich aus geschmolzenem Felsgestein – beherbergen. Magnetfelder von Planeten könnten sich in dieser flüssigen Felsschicht herausgebildet haben.“

Veröffentlichung:

M. Millot, N. Dubrovinskaia, A. Černok, S. Blaha, L. Dubrovinsky, D. G. Braun, P. M. Celliers, G. W. Collins, J. H. Eggert and R. Jeanloz,
Shock compression of stishovite and melting of silica at planetary interior conditions,
Science (2015) DOI: 10.1126/science.1261507

Ansprechpartner:

Prof. Dr. Natalia Dubrovinskaia
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
Natalia.Dubrovinskaia@uni-bayreuth.de

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Gebirge in Bewegung
14.08.2018 | Technische Universität München

nachricht Künstliche Gletscher als Antwort auf den Klimawandel?
09.08.2018 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics