Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Forscher untersuchen einzigartige Unterwasser-Tropfsteine

24.11.2017

Aktuelle Forschungen zeigen, wie die „Hells Bells“-Formationen auf der Yukatan-Halbinsel entstanden sind

Wissenschaftler haben in den vergangenen Jahren eine kleine Gruppe von Tropfsteinen identifiziert, bei denen die charakteristische Kalkbildung nicht etwa in einer trockenen Höhle, sondern unter Wasser abzulaufen scheint. Dazu zählen die sogenannten Hells Bells in der El Zapote-Höhle bei Puerto Morelos auf der Yukatan-Halbinsel.


Die Hells Bells-Formationen in der El Zapote-Höhle bei Puerto Morelos auf der Yukatan-Halbinsel.

Foto: E.A.N./IPA/INAH/MUDE/UNAM/HEIDELBERG

Ein deutsch-mexikanisches Forscherteam unter der Leitung von Prof. Dr. Wolfgang Stinnesbeck vom Institut für Geowissenschaften der Universität Heidelberg hat nun analysiert, wie sich diese glockenförmigen und meterlangen Formationen unter Beteiligung von Bakterien und Algen gebildet haben. Veröffentlicht wurden die Ergebnisse ihrer Forschungen in der Fachzeitschrift „Palaeogeography, Palaeoclimatology, Palaeoecology“.

Hängende Tropfsteine, auch Stalaktiten genannt, entstehen im Zuge physikalisch-chemischer Prozesse, bei denen kalkhaltiges Wasser eintrocknet. Sie verjüngen sich normalerweise und bilden an ihrem unteren Ende eine Spitze, von der die Wassertropfen auf den Höhlenboden fallen. Die Formationen in der El Zapote-Höhle, die bis zu zwei Meter lang sind, öffnen sich kegelförmig, sind hohl und weisen runde, elliptische oder auch hufeisenförmige Querschnitte auf.

Aber nicht nur ihre Form und Größe sind einzigartig, sondern auch die Bedingungen ihres Wachstums, so Prof. Stinnesbeck. Sie entstehen in einer absolut lichtlosen Umgebung an der Basis einer 30 Meter dicken Süßwassereinheit, die sich unmittelbar über einer sauerstofffreien Zone mit sulfidhaltigem giftigen Salzwasser befindet.

„Die örtliche Taucher-Gemeinschaft hat ihr daher den Namen ,Hells Bells‘, Höllenglocken, gegeben, der aus unserer Sicht sehr gut passt“, sagt Wolfgang Stinnesbeck. Dass diese Formationen tatsächlich unter Wasser entstanden sein müssen, belegen Altersdatierungen der Kalkstrukturen, die über das Verhältnis von Uranium-Thorium-Isotopen vorgenommen wurden. Sie belegen, dass die „Hells Bells“ bis in historische Zeiten gewachsen sein müssen. Bereits damals waren die tiefen Bereiche der Höhle seit Tausenden von Jahren überflutet.

Wie der Heidelberger Geowissenschaftler weiter ausführt, repräsentiert diese Unterwasserwelt auf der Yukatan-Halbinsel in Mexiko ein rätselhaftes Ökosystem, in dem sich die größten heute bekannten Unterwasser-Tropfsteine bilden konnten. Die bisher entdeckten Tropfsteine dieser Art sind nach den Worten von Prof. Stinnesbeck viel kleiner und unscheinbarer als die „Hells Bells“.

Die Forscher vermuten, dass das Wachstum der Höllenglocken an spezielle physikalische und biochemische Bedingungen nahe der Halokline geknüpft ist. Damit ist diejenige Schicht in der Wassersäule gemeint, die das Süßwasser von dem darunterliegenden schwereren Salzwasser trennt. „Hier könnten Stickstoff-verarbeitende Bakterien, die bis heute aktiv sind, durch ihre Fähigkeit zur Erhöhung des pH-Wertes eine entscheidende Rolle für die Kalkabscheidung gehabt haben“, betont Wolfgang Stinnesbeck.

Originalpublikation:
Stinnesbeck, W., Frey, E., Zell, P., Avíles, J., Hering, F., Frank, N., Arps, J., Geenen, A., Gescher, J., Isenbeck-Schröter, M., Ritter, S., Stinnesbeck, S., Aceves Núñez, E., Fito Dahne, V., González González, A.H., Deininger, M.: Hells Bells – unique speleothems from the Yucatán Peninsula, Mexico, generated under highly specific subaquatic conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2017.10.01

Kontakt:
Prof. Dr. Wolfgang Stinnesbeck

Institut für Geowissenschaften
Tel. +49 6221 54-6057

wolfgang.stinnesbeck@geow.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Letztes Stadium vor dem grossen Knall?
19.11.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Massiver Meteoriten-Einschlagskrater entdeckt
15.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics