Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gasquellen vor Spitzbergen kein neues Phänomen

19.09.2012
Expedition in die Grönlandsee erbringt überraschende Ergebnisse
Viereinhalb Wochen lang haben Meeresforscher aus Kiel zusammen mit Kollegen aus Bremen, aus Großbritannien, der Schweiz und Norwegen mit dem deutschen Forschungsschiff MARIA S. MERIAN Methanaustritte am Meeresboden vor der Küste Spitzbergens untersucht. Dabei gewannen sie ein äußerst differenziertes Bild: Einige der Gasquellen sind offensichtlich schon seit Jahrhunderten aktiv.

Mehrere Stürme und Minusgrade – die Natur hat es nicht immer gut mit den Meeresforschern gemeint, die vom deutschen Forschungsschiff MARIA S. MERIAN aus viereinhalb Wochen lang Gasquellen am Meeresboden vor der Küste Spitzbergens untersucht haben. Trotzdem sind die Teilnehmer nach der Rückkehr sehr zufrieden: „Wir haben viele Proben und Daten in dem betroffenen Gebiet sammeln können. Mit dem Tauchboot JAGO konnten wir uns sogar ein eigenes Bild vom Aussehen des Meeresbodens und der Gasquellen machen“, resümiert der wissenschaftliche Fahrtleiter Professor Dr. Christian Berndt vom GEOMAR | Helmholtz-Zentrum für Ozeanforschung Kiel.

Das Tauchboot JAGO während der Expedition MSM21/4. Im Hintergrund ist Spitzbergen zu sehen.

Foto: Felix Gross, GEOMAR

Hintergrund für die Expedition waren Überlegungen, dass sich bei steigenden Wassertemperaturen im Meeresboden lagernde, eisähnliche Methanhydrate langsam auflösen könnten. „Das Methanhydrat ist nur bei sehr niedrigen Temperaturen und sehr hohem Druck stabil. Die Gasquellen vor Spitzbergen liegen ungefähr in der Wassertiefe, die die Grenze zwischen Stabilität und Auflösung bedeutet. Deshalb lag die Vermutung nahe, dass bei den messbar steigenden Wassertemperaturen in der Arktis die Hydrate von oben her anfangen abzutauen“, erklärt Professor Berndt. Methan könnte dann ins Wasser oder gar in die Atmosphäre gelangen, wo es ein wesentlich stärkeres Treibhausgas als CO2 ist.

Was die Forscher im Untersuchungsgebiet tatsächlich vorfanden, ergibt jedoch ein wesentlich differenzierteres Bild. Vor allem die Befürchtung, dass die Gasaustritte eine Folge der aktuellen Meerwassererwärmung sein könnten, scheint nicht zuzutreffen. Denn zumindest einige Gasquellen müssen schon länger aktiv sein. An ihnen fanden sich Karbonatkrusten, die entstehen, wenn Mikroorganismen das austretende Methan umwandeln. „Wir haben an einigen der Austrittstellen Krusten gefunden, die möglicherweise schon mehrere hundert Jahre alt sind. Diese Schätzung beruht zwar nur auf der Größe der Proben und Erfahrungswerten, wie schnell solche Krusten wachsen. Auf jeden Fall müssen die Methanquellen aber schon älter sein“, sagt Professor Berndt. Das genaue Alter der Karbonate wird nun anhand gewonnener Proben in den Laboren am GEOMAR bestimmt.

„Genaueres können wir erst in einigen Monaten sagen, wenn die Daten analysiert wurden, aber die beobachteten Gasaustritte sind wahrscheinlich nicht auf menschlichen Einfluss zurückzuführen“, so Berndt. Stattdessen gibt es zwei andere Erklärungsmöglichkeiten: Entweder sind sie Symptome einer langfristigen Erwärmung oder sie stellen einen saisonalen Prozess dar, bei dem Gashydrate immer wieder schmelzen und neu entstehen.

Eine andere interessante Beobachtung der Expedition war, dass sich am Meeresboden eine bereits sehr aktive mikrobielle Gemeinschaft etabliert hat, die das Methan konsumiert. „Wir konnten sehr hohe Konzentrationen von Schwefelwasserstoff nachweisen, die ein Indiz für methanfressende Mikroben im Meeresboden darstellen, und haben mit JAGO typische Lebensgemeinschaften, wie wir sie von älteren Methanquellen kennen, entdeckt“, erklärt die ebenfalls an der Expedition beteiligte Mikrobiologin Professor Dr. Tina Treude vom GEOMAR. „Methanfressende Mikroben wachsen nur recht langsam im Meeresboden und die hohe Aktivität deutet darauf hin, dass das Methan nicht erst seit kurzem aus dem Meeresboden steigt."

Neben Kieler Meeresforschern vom GEOMAR und vom Exzellenzcluster „Ozean der Zukunft“ waren auch Kollegen aus Bremen, aus der Schweiz, aus Großbritannien und aus Norwegen an den Arbeiten beteiligt. „Die Untersuchung der Gasquellen im Europäischen Nordmeer ist ein gutes Beispiel für gemeinsame europäische Forschung“, betont Professor Berndt.

So bargen die deutschen Wissenschaftler jetzt ein Ozeanbodenobservatorium, das das britische Forschungsschiff „James Clark Ross“ vor einem Jahr während einer gemeinsamen Expedition des National Oceanography Centre Southampton und des Institut français de recherche pour l'exploitation de la mer (Ifremer) dort installiert hatte. „Das System Erde zu verstehen, ist eine Herausforderung, die nur in internationaler Kooperation funktioniert“, betont Berndt. Auch die weitere Auswertung der gewonnenen Daten wird in enger internationaler Zusammenarbeit erfolgen.

Andreas Villwock | idw
Weitere Informationen:
http://www.geomar.de/
http://www.ozean-der-zukunft.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Sensationsfund: Spuren eines Regenwaldes in der Westantarktis
02.04.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Erdbeben auf Island über Telefonglasfaserkabel registriert
25.03.2020 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics