Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gasquellen vor Spitzbergen kein neues Phänomen

19.09.2012
Expedition in die Grönlandsee erbringt überraschende Ergebnisse
Viereinhalb Wochen lang haben Meeresforscher aus Kiel zusammen mit Kollegen aus Bremen, aus Großbritannien, der Schweiz und Norwegen mit dem deutschen Forschungsschiff MARIA S. MERIAN Methanaustritte am Meeresboden vor der Küste Spitzbergens untersucht. Dabei gewannen sie ein äußerst differenziertes Bild: Einige der Gasquellen sind offensichtlich schon seit Jahrhunderten aktiv.

Mehrere Stürme und Minusgrade – die Natur hat es nicht immer gut mit den Meeresforschern gemeint, die vom deutschen Forschungsschiff MARIA S. MERIAN aus viereinhalb Wochen lang Gasquellen am Meeresboden vor der Küste Spitzbergens untersucht haben. Trotzdem sind die Teilnehmer nach der Rückkehr sehr zufrieden: „Wir haben viele Proben und Daten in dem betroffenen Gebiet sammeln können. Mit dem Tauchboot JAGO konnten wir uns sogar ein eigenes Bild vom Aussehen des Meeresbodens und der Gasquellen machen“, resümiert der wissenschaftliche Fahrtleiter Professor Dr. Christian Berndt vom GEOMAR | Helmholtz-Zentrum für Ozeanforschung Kiel.

Das Tauchboot JAGO während der Expedition MSM21/4. Im Hintergrund ist Spitzbergen zu sehen.

Foto: Felix Gross, GEOMAR

Hintergrund für die Expedition waren Überlegungen, dass sich bei steigenden Wassertemperaturen im Meeresboden lagernde, eisähnliche Methanhydrate langsam auflösen könnten. „Das Methanhydrat ist nur bei sehr niedrigen Temperaturen und sehr hohem Druck stabil. Die Gasquellen vor Spitzbergen liegen ungefähr in der Wassertiefe, die die Grenze zwischen Stabilität und Auflösung bedeutet. Deshalb lag die Vermutung nahe, dass bei den messbar steigenden Wassertemperaturen in der Arktis die Hydrate von oben her anfangen abzutauen“, erklärt Professor Berndt. Methan könnte dann ins Wasser oder gar in die Atmosphäre gelangen, wo es ein wesentlich stärkeres Treibhausgas als CO2 ist.

Was die Forscher im Untersuchungsgebiet tatsächlich vorfanden, ergibt jedoch ein wesentlich differenzierteres Bild. Vor allem die Befürchtung, dass die Gasaustritte eine Folge der aktuellen Meerwassererwärmung sein könnten, scheint nicht zuzutreffen. Denn zumindest einige Gasquellen müssen schon länger aktiv sein. An ihnen fanden sich Karbonatkrusten, die entstehen, wenn Mikroorganismen das austretende Methan umwandeln. „Wir haben an einigen der Austrittstellen Krusten gefunden, die möglicherweise schon mehrere hundert Jahre alt sind. Diese Schätzung beruht zwar nur auf der Größe der Proben und Erfahrungswerten, wie schnell solche Krusten wachsen. Auf jeden Fall müssen die Methanquellen aber schon älter sein“, sagt Professor Berndt. Das genaue Alter der Karbonate wird nun anhand gewonnener Proben in den Laboren am GEOMAR bestimmt.

„Genaueres können wir erst in einigen Monaten sagen, wenn die Daten analysiert wurden, aber die beobachteten Gasaustritte sind wahrscheinlich nicht auf menschlichen Einfluss zurückzuführen“, so Berndt. Stattdessen gibt es zwei andere Erklärungsmöglichkeiten: Entweder sind sie Symptome einer langfristigen Erwärmung oder sie stellen einen saisonalen Prozess dar, bei dem Gashydrate immer wieder schmelzen und neu entstehen.

Eine andere interessante Beobachtung der Expedition war, dass sich am Meeresboden eine bereits sehr aktive mikrobielle Gemeinschaft etabliert hat, die das Methan konsumiert. „Wir konnten sehr hohe Konzentrationen von Schwefelwasserstoff nachweisen, die ein Indiz für methanfressende Mikroben im Meeresboden darstellen, und haben mit JAGO typische Lebensgemeinschaften, wie wir sie von älteren Methanquellen kennen, entdeckt“, erklärt die ebenfalls an der Expedition beteiligte Mikrobiologin Professor Dr. Tina Treude vom GEOMAR. „Methanfressende Mikroben wachsen nur recht langsam im Meeresboden und die hohe Aktivität deutet darauf hin, dass das Methan nicht erst seit kurzem aus dem Meeresboden steigt."

Neben Kieler Meeresforschern vom GEOMAR und vom Exzellenzcluster „Ozean der Zukunft“ waren auch Kollegen aus Bremen, aus der Schweiz, aus Großbritannien und aus Norwegen an den Arbeiten beteiligt. „Die Untersuchung der Gasquellen im Europäischen Nordmeer ist ein gutes Beispiel für gemeinsame europäische Forschung“, betont Professor Berndt.

So bargen die deutschen Wissenschaftler jetzt ein Ozeanbodenobservatorium, das das britische Forschungsschiff „James Clark Ross“ vor einem Jahr während einer gemeinsamen Expedition des National Oceanography Centre Southampton und des Institut français de recherche pour l'exploitation de la mer (Ifremer) dort installiert hatte. „Das System Erde zu verstehen, ist eine Herausforderung, die nur in internationaler Kooperation funktioniert“, betont Berndt. Auch die weitere Auswertung der gewonnenen Daten wird in enger internationaler Zusammenarbeit erfolgen.

Andreas Villwock | idw
Weitere Informationen:
http://www.geomar.de/
http://www.ozean-der-zukunft.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der flüssige Fingerabdruck von Wirbelstürmen
20.09.2019 | Humboldt-Universität zu Berlin

nachricht Land unter: Steigende Hochwassergefahr durch gleichzeitige Sturmfluten und Starkniederschläge in Nordeuropa
19.09.2019 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics