Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben unter extremen Bedingungen

31.01.2002


Übersichtsartikel in Science

Das Wissenschaftsmagazin Science rückt das Thema "Lebensraum Meereis" in seiner aktuellen Ausgabe auf die Titelseite. Dr. David Thomas von der University of Wales-Bangor und Dr. Gerhard Dieckmann vom Alfred-Wegener-Institut für Polar- und Meeresforschung (AWI) sind Verfasser des Übersichtsartikels "Antarctic Sea Ice - Habitat for Extremophiles". Wir informieren hier kurz über die aktuelle Forschung der Arbeitsgruppe am AWI. Eine Übersetzung des Artikels finden Sie in der Anlage. Eine Abbildung schicken wir Ihnen auf Anfrage gern zu.

Das Meereis bedeckt etwa 13% der Erdoberfläche. In den winzigen, stark salzhaltigen Kanälchen, die sich beim Gefrieren des Meerwassers bilden, leben Bakterien, einzellige Mikroalgen und Tiere. Sie gedeihen hier und pflanzen sich fort bei Temperaturen weit unter dem Gefrierpunkt, bei sehr hohen Salzgehalten und sehr geringem Lichteinfall. Wie ihre Anpassung an diesen ungemütlichen Lebensraum funktioniert, wird in verschiedenen Arbeitsgruppen am Alfred-Wegener-Institut für Polar- und Meeresforschung untersucht. Die polare Mikroalge Fragilariopsis cylindrus hat das besondere Interesse der Forscher geweckt. Unter simulierten Freilandbedingungen wächst die Alge hier im Labor in Bremerhaven. Spezialinstrumente messen die Produktion von Sauerstoff in den bewohnten Kanälchen und damit das Wohlbefinden der Alge. Genetische Analysen der Kulturen dienen der Identifizierung der Enzyme, die für die Anpassung an diesen Lebensraum notwendig sind. Da sich Dr. Dieckmann derzeit auf Expedition befindet, steht für weitere Fragen sein Kollege Thomas Mock zur Verfügung (Telefon: 0471 / 4831 - 1893).

Bremerhaven, den 31. Januar 2002
Bitte senden Sie uns bei Abdruck einen Beleg.

Antarktisches Meereis - Ein Lebensraum für Extremophile von Dr. David Thomas und Dr. Gerhard Dieckmann
Erschienen in Science, Vol. 295, No 5555, vom 25. Januar 2002
Übersetzt und zusammengefasst von Thomas Mock

Anders als Süßwassereis bildet Meerwasser beim Gefrieren ein halbfestes, sprödes Material, durchzogen von einem Netzwerk feiner Kanäle und Poren. Sie sind einige Mikrometer bis einige Millimeter groß und mit Salzsole gefüllt, die sich bildet, wenn die Eiskristalle zusammenfrieren.
Die physikalischen und chemischen Eigenschaften des Meereises werden an der Oberseite durch die Atmosphäre bestimmt und an der Unterseite durch das Meerwasser. Hierdurch wird das Meereis zu einer Grenzschicht zwischen Atmosphäre und Ozean mit großen Unterschieden in Temperatur, Salzgehalts, Raum und Licht. Die Temperaturen können an der Oberseite bis zu -20°C erreichen und an der Unterseite auf -1.8°C ansteigen. Dabei ändert sich der Salzgehalt der Sole von 200ppt auf 38ppt bei gleichzeitiger Vergrößerung der Solekanäle an der Unterseite. Der Großteil des eingestrahlten Lichtes wird durch den Schnee und das Eis an der Oberfläche reflektiert. Der eindringende Teil nimmt dann mit zunehmender Tiefe rasch ab. Nur maximal 5% des einfallenden Lichtes gelangt so an die Unterseite.
Die meisten Organismen des Meereises wie Viren, Bakterien, Algen, Protisten, Würmer und kleine Krebse gelangen während der Meereisbildung im Herbst in das Eis. Die aufsteigenden Eiskristalle sammeln diese Mikroorganismen aus dem Wasser und schließen sie in die Solekanäle oder Taschen ein. Aber nur solche Organismen können sich in diesem Lebensraum vermehren, die an diese extremen Bedingungen angepasst sind. Die erfolgreichsten und gleichzeitig auffälligsten Organismen sind Kieselalgen (Diatomeen), die an diese geringen Lichtintensitäten gut angepasst sind und mit ihren photosynthetischen Pigmenten das Eis braun färben. Sie sind eine wichtige Nahrungsgrundlage für den Antarktischen Krill, der sich hauptsächlich im Winter von ihnen ernährt.
Die Anpassung an die tiefen Temperaturen ist eine wichtige Voraussetzung für alles Leben im Meereis. Die meisten Organismen sind bei Temperaturen von über +15°C nicht mehr lebensfähig. Die Gefahr des Einfrierens besteht durch den Entzug von freiem Wasser in den Zellen bei gleichzeitig hohem Salzgehalt der Sole. Unter diesen Bedingungen produzieren die Organismen Osmolyte, mit denen ein Wasserentzug verhindert werden kann.
Ein interessanter Osmolyt und Gefrierschutzstoff bei Meereisalgen ist Dimethylsulfoniumproprionat (DMSP), die Vorstufe des flüchtigen Dimethylsulfides (DMS). DMS gelangt nach Abspaltung von DMSP aus dem Meereis in die Atmosphäre, wo es zu SO3 und Sulfonaten oxidiert wird. Diese wirken als Kondensationskeime für die Wolkenbildung und beeinflussen dadurch direkt die Regulation des Klimas.
Neben den Osmolyten sind besonders kälteangepasste Enzyme mit hoher katalytischer Aktivität bei niedrigen Temperaturen für die Frostresistenz verantwortlich. Auch ein hoher Anteil an mehrfach ungesättigten Fettsäuren (PUFAs) ist eine wichtige Voraussetzung für die Kälteanpassung. Hierdurch wird die Fluidität der Zellmembranen auch noch bei sehr niedrigen Temperaturen gewährleistet. Das ist besonders für den Transport von Nährstoffen und für die Funktion membrangebundener Enzyme wichtig.
Nicht nur intrazellulare Anpassungen spielen eine wichtige Rolle im Leben der Meereisorganismen. Viele Meereisdiatomeen sondern so genannte Eisaktive-Substanzen ab, zu denen beispielsweise Glycoproteine gehören, mit denen sie die Oberflächen und die optischen Eigenschaften der Eiskristalle verändern können, von denen sie umgeben werden. Auch Polysaccharide werden ausgeschieden, die einer Art Schutzfilm um die Zellen bilden.
Diese physiologischen Fähigkeiten ziehen in den letzten Jahren die Aufmerksamkeit von Biotechnologen und Pharmazeuten auf sich, die besonders die kälteangepassten Enzyme und die mehrfach ungesättigten Fettsäuren für den Menschen nutzen wollen. Neben diesen angewandten Aspekten bleibt die Frage, wie sehr sich das gesamte Ökosystem der Polarregionen durch eine Veränderung der Meereisausdehnung aufgrund einer Klimaerwärmung ändern wird. Es ist anzunehmen, dass sich dadurch auch die Verbreitung der Meereisorganismen ändert, was besonders in der Antarktis bedeutende Konsequenzen für den Krill hat, der im Meereis seine Nahrungsgrundlage findet.
Nicht nur auf der Erde rücken die Meereisorganismen in den Focus der Wissenschaft. Die Entdeckung der eisbedeckten Ozeane auf den Jupitermonden Europa und Ganymed treiben Astrobiologen zu enthusiastischen Vorstellungen, dass dieses Eis vielleicht auch Mikroorganismen enthalten könnte. Braun gefärbte Eisschollen auf Europa wecken sehr schnell die Erinnerung an mit Diatomeen besiedeltes Meereis. Doch dieses extraterrestrische Eis ist zwischen 10 und 100km dick bei Temperaturen weit unter - 20°C. Falls dort wirklich Lebensformen existieren oder existierten, scheint es sehr unwahrscheinlich, dass es die gleichen sind wie im Meereis unserer heutigen Erde.

Dipl.-Ing. Margarete Pauls | idw

Weitere Berichte zu: Enzym Lebensraum Meereis Organismus Salzgehalt Temperatur

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Drohnen zählen Tiere in Afrika
11.07.2018 | Schweizerischer Nationalfonds SNF

nachricht Schwarzer Kohlenstoff altert in Böden und Flüssen vor dem Transport ins Meer
10.07.2018 | Universität Zürich

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics