Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Suche nach den ältesten Gesteinen im Sonnensystem

07.02.2006


Die Deutsche Forschungsgemeinschaft (DFG) hat den Universitäten Köln und Bonn 1,2 Millionen Euro für den Kauf eines hochpräzisen Massenspektrometers bewilligt. Mit dem Gerät werden die Mineralogen unter anderem nach der ältesten Materie im Sonnensystem fahnden. In einem neuen Bonn-Kölner Labor für Isotopengeochemie wollen sie auch Mondgestein unter die Lupe nehmen.


Das Bild zeigt den Allende-Meteoriten, der 1968 auf die Erde gefallen ist. Er ist 4.56 Milliarden Jahre. Die braunen Fragmente (chondren) sind Schmelztröpfchen, die bei einem Kosmischen Gewitter vor 4.56 Milliarden Jahren enstanden sind. Das weiße Fragment ist eines der ältesten Kondensate im Sonnensystem (4,567 Milliarden Jahre). Seit dem letzten Jahr erst ist bekannt, dass Eisen-Meteorite noch älter sind. Foto: Prof. Dr. Carsten Münker



Vor 14,7 Millionen Jahren hagelte es im heutigen Tschechien grünes Glas. Kurz zuvor war in Süddeutschland ein riesiger Meteorit eingeschlagen. Dabei hatte er einen Krater von 23 Kilometern Durchmesser gerissen: Das Nördlinger Ries. Das Projektil verdampfte, mit ihm einige Kubikkilometer Erdgestein. Innerhalb weniger Minuten bildete sich eine Wolke von über 100 Kilometern Höhe. Daraus kondensierten die Glaskörper, die wenig später südlich des heutigen Prag herunterregneten. Ein bis zehn Zentimeter groß sind diese Moldavite. Sie ähneln zerbrochenen Bierflaschen und haben mit dem Gestein, das man heute hunderte Kilometer weiter westlich im Nördlinger Ries findet, augenscheinlich nicht viel gemein. "Mit Isotopenmessungen konnte man aber nachweisen, dass die Moldavite tatsächlich aus dem Meteoritenaufprall stammen", erklärt der Bonner Mineraloge Professor Dr. Carsten Münker.



Altersrekord liegt bei 4,570 Milliarden Jahren

Münkers Arbeitsgruppe hat zusammen mit seinem Kölner Kollegen Professor Dr. Herbert Palme gerade ein neues Messgerät bewilligt bekommen, das diesen Nachweis noch präziser führen könnte: Ein extrem empfindliches Massenspektrometer, mit dem sich die Häufigkeit verschiedener Isotope in Gesteinen und Mineralen messen lässt. "Isotope sind Teilchen ein und desselben chemischen Elements, die jedoch unterschiedliche Massen besitzen, also unterschiedlich ’schwer’ sind", erklärt Münker. "Mit dem neuen Gerät können wir den Anteil eines Isotops in einem Festkörper bis auf 0,001 Prozent genau bestimmen." Mit dem 1,2 Millionen Euro teuren Gerät wollen sich die Mineralogen nun nach den ältesten Gesteinen und Mineralen im Sonnensystem fahnden. Bisheriger Rekordhalter sind nach neuen Ergebnissen der Köln-Bonner Mineralogen die so genannten Eisen-Meteorite: Sie sind bis zu 4,570 Milliarden Jahre alt und damit etwa 3 Millionen Jahre vor dem bislang ältesten datierten Material im Sonnensystem entstanden.

Isotope dienen den Mineralogen als Uhr: Viele von ihnen sind nicht stabil, sondern zerfallen im Laufe der Zeit. Von einem Gramm Uran bleibt so nach 4,5 Milliarden Jahren nur noch etwas mehr als die Hälfte übrig, die andere Hälfte hat sich in dieser Zeit in Blei verwandelt. Aus dem Verhältnis von Uran zu Blei in sehr alten Erdgesteinen kann man daher das Mindestalter unseres Heimatplaneten abschätzen - allerdings nur ziemlich grob, da die Erde durch Plattenbewegungen stets ihre Oberfläche verjüngt. "Es gibt aber auch Elemente, die eine so geringe Halbwertszeit hatten, dass sie schon wenige hundert Millionen Jahre nach Entstehung der Erde komplett zerfallen waren", erläutert Münker. "Sie erlauben eine viel genauere Altersmessung - vorausgesetzt, man hat ein entsprechend empfindliches Massenspektrometer."

Ausgestorben ist beispielsweise das Isotop Hafnium-182. Es wandelt sich mit einer Halbwertszeit von 9 Millionen Jahren in Wolfram-182 um - Wolfram ist das Metall, aus dem unter anderem der Draht von Glühbirnen besteht. Als sich die Erde kurz nach ihrer Entstehung abkühlte, sank das meiste Wolfram in den metallischen Erdkern ab. Da in der inzwischen erstarrten äußeren Hülle der Erde damals noch ein wenig Hafnium-182 vorhanden war, bildete sich dort aber noch Wolfram-182 nach. Aus der Wolfram-182-Menge im Erdgestein lässt sich daher errechnen, wann sich der metallische Kern der Erde bildete - ein viel verlässlicheres Maß für das Alter unseres Planeten (ungefähr 4,53 Milliarden Jahre). "Dazu benötigen wir aber als Referenz Material aus dem All, also beispielsweise von niedergegangenen Meteoriten", erklärt Münker. "Nur so können wir feststellen, wie hoch die Wolfram-182-Menge auf der Erde heute wäre, wenn ein Großteil davon nicht unwiederbringlich im Erdkern verschwunden wäre."

20.000 Meteorite pro Jahr

Eine Spezialität der Bonn-Kölner Mineralogie ist daher die Untersuchung von außerirdischen Proben. Mangel herrscht daran glücklicherweise nicht: Rund 20.000 Meteorite mit einer Masse von mehr als 100 Gramm fallen pro Jahr auf die Erdoberfläche. Besonders leicht fündig wird man an den Polen oder in großen Sandwüsten wie der Sahara: Einerseits verwittert das Material dort nicht so schnell, andererseits hebt es sich aufgrund seiner dunklen Farbe gut vom Untergrund ab. "Wir untersuchen aber beispielsweise auch Mondgestein, das durch die Apollo-Missionen zur Erde gebracht wurde", erklärt Münker. Etwa 360 Kilogramm hatten die Raumfahrer damals eingesammelt. Das Material ist extrem wertvoll; daher darf man für Untersuchungen nur kleinste Mengen verbrauchen. Kein Problem für das neue Gerät, betont Professor Münker: "Das Spektrometer ist so empfindlich, dass wir damit schon an geringsten Probenmengen Isotopenmessungen durchführen können."

Kontakt:
Professor Dr. Carsten Münker
Mineralogisch-Petrologisches Institut der Universität Bonn
Telefon: 0228/73-2733
E-Mail: muenker@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Gestein Meteorit Mineraloge Sonnensystem

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter
21.09.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Warnung vor Hybris bei CO2-Entzug
20.09.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics