Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

5 Jahre Geothermie-Heizwerk Neustadt-Glewe. Wärme aus den Tiefen der Erde

21.09.2000


6.000 Tonnen weniger CO2-Emissionen durch Geothermienutzung

Seit fünf Jahren erfolgt durch die Erdwärme Neustadt-Glewe GmbH in der mecklenburgischen Kleinstadt Neustadt-Glewe die Fernwärmeversorgung von Wohn- und Gewerbeeinrichtungen auch aus unterirdischen Wärmequellen. 

Dabei wird das Prinzip der hydrothermalen Geothermienutzung angewendet. Grundlage dafür ist eine vorhandene wasserführende Gesteinsschicht in etwa 2.450 Meter Tiefe, die angebohrt wurde. In der Bohrung steigt das 100 Grad Celsius heiße Thermalwasser bis rund 90 Meter an die Erdoberfläche heran. Eine Unterwassermotorpumpe fördert das Thermalwasser nach obertage, drückt es durch die im Heizwerk befindlichen Wärmetauscher bis zu einer zweiten Bohrung, in welcher das auf etwa 50 Grad Celsius abgekühlte Thermalwasser der Gesteinsschicht zurückgegeben wird. Die drehzahlvariable Unterwassermotorpumpe fördert nur soviel Thermalwasser, wie für den Wärmebedarf der Kunden benötigt wird.

Die heutige Festveranstaltung zum 5-jährigen erfolgreichen Betriebsjubiläum steht unter der Schirmherrschaft von Bundesumweltminister Jürgen Trittin. Die Festrede hält Umweltstaatssekretärin Simone Probst.

Auch auf internationaler Ebene hat dieses Prinzip der Energienutzung für Aufsehen gesorgt. Bei der Vorstellung der Anlage auf dem 3. Weltkongress für Geothermie in Japan stieß insbesondere das Know-how für die Injektion des abgekühlten Wassers zurück in die tiefen Gesteinsschichten auf großes Interesse. Bedarf haben unter anderem Ungarn, Österreich, die Schweiz, Rumänien und Bulgarien angemeldet. In diesen Ländern erfolgt zur Zeit noch die Ableitung des "kalten" Wassers in Seen und Flüsse.

Die Geothermieanlage in Neustadt-Glewe verfügt mit 100 Grad Celsius über den wärmsten Tiefenwasserspeicher in Deutschland. Deshalb kann auch auf den Einsatz von Wärmepumpen verzichtet werden. Rund 90 bis 95 Prozent der benötigten Fernwärme wird aus geothermischer Energie gewonnen. Der Rest kommt aus einer gasgefeuerten Kesselanlage, die als Spitzenlast- und Redundanzanlage zur Sicherung der Wärmeversorgung im Falle von Belastungsspitzen, in extremen Winterzeiten und bei Ausfällen des Thermalwasserkreislaufes eingesetzt wird. Die Anlage ist für 21.000 MWh pro Jahr konzipiert. 1999 wurden 15.200 MWh Wärme erzeugt, davon 14.800 MWh aus Geothermie.

Mit der Geothermieanlage in Neustadt-Glewe wurde eine umweltfreundliche und nahezu kohlendioxidfrei arbeitende Fernwärmeversorgung aufgebaut. Verglichen mit dem Einsatz von Gas- oder Heizöl können hier jährlich
6.000 Tonnen CO2-Emissionen vermieden werden.

Zum Bau und Betrieb der Fernwärmeversorgung auf Basis von geothermischer Energie wurde 1992 die Erdwärme Neustadt-Glewe GmbH gegründet. Die Betriebsführung obliegt der WEMAG AG Schwerin. Derzeit beziehen 1.300 Haushalte und 20 Gewerbekunden ihre Fernwärme aus dieser Anlage.

Näheres zum Geothermie-Heizwerk Neustadt-Glewe erhalten Sie bei: Erdwärme Neustadt-Glewe GmbH, Obotritenring 40, 19053 Schwerin, Tel.: 0385-755-2267 o. 0170-921-2267. Fax: 0385-755-2822, E-Mail: heiner.menzel@wemag.com.                          
Ihr Ansprechpartner ist Dr. Heiner Menzel

Weitere Informationen zur Geothermie finden Sie, ständig aktualisiert auf unserer Homepage www.geothermie.de .

Werner Bussmann | idw

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Schwerefeldbestimmung der Erde so genau wie noch nie
13.06.2019 | Technische Universität Graz

nachricht Magnetismus im Erdmantel entdeckt
06.06.2019 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Weizensorten bewähren sich auch unter widrigen Anbaubedingungen

17.06.2019 | Agrar- Forstwissenschaften

Inventur in der Synapse

17.06.2019 | Biowissenschaften Chemie

Zellbiologie - Qualitätskontrolle für Mitochondrien

17.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics