Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Sonar-Technologie Made in Germany - Hochaufgelöste 3D-Bildgebung auf kurze Distanzen

07.06.2017

Die Sonar-Technologie wird bereits seit vielen Jahren bei der Vermessung von Seeböden, in der Fischerei oder auch bei der Suche nach versunkenen Objekten am Meeresboden angewandt. Mit Hilfe neuartiger 3D-Sonar-Systeme des Fraunhofer-Instituts für Biomedizinische Technik IBMT kann dies nun effizienter und präziser erfolgen. Der Geschäftsbereich Sonar bündelt die Forschungs- und Entwicklungsaktivitäten im Bereich der akustischen Unterwassermesstechnik. Einen Schwerpunkt stellt die hochaufgelöste volumetrische Sonar-Bildgebung auf Distanzen von weniger als 25 m dar.
Das Fraunhofer IBMT stellt auf der diesjährigen OCEANS Konferenz in Aberdeen von 19.-22. Juni 2017 (Stand Nummer 4) aus.

Die Sonar-Technologie - die Untersuchung von Strukturen unter Wasser mit Hilfe von Schallsignalen - wird bereits seit vielen Jahren bei der Vermessung von Seeböden, in der Fischerei oder auch bei der Suche nach versunkenen Objekten am Meeresboden angewandt. Die hierfür verwendeten Systeme sind meist für große Messdistanzen ausgelegt und erreichen in der Regel eine relativ grobe räumliche Auflösung.


Echtzeitfähige 3D-Sonar-Kamera

Fraunhofer IBMT


3D-Rekonstruktion eines Messobjekts.

Fraunhofer IBMT

Viele Anwendungen im Unterwasserbereich benötigen eine hochaufgelöste Umgebungsvisualisierung auf kurze Distanz. Oft werden hierzu optische Kamerasysteme eingesetzt. Diese sind jedoch bei starker Wassertrübung zumeist unbrauchbar, weshalb Einsätze oftmals abgebrochen werden müssen. Mit Hilfe neuartiger 3D-Sonar-Systeme können diese Aufgaben nun effizienter und präziser erfüllt werden.

Der Geschäftsbereich Sonar der Hauptabteilung Ultraschall des Fraunhofer-Instituts für Biomedizinische Technik IBMT in Sulzbach bündelt die bisherigen und zukünftigen Forschungs- und Entwicklungsaktivitäten im Bereich der akustischen Unterwassermesstechnik. Ein Schwerpunkt der aktuellen Forschung und Entwicklung stellt die hochaufgelöste volumetrische Sonar-Bildgebung auf Distanzen von weniger als 25 m dar.

Hochauflösend bedeutet in diesem Kontext die Darstellung von Strukturen im Zentimeterbereich bei wenigen Metern Messabstand. Derzeit sind drei bildgebende Sonar-Systeme in einen Demonstratoraufbau überführt und werden zu Labor- und Feldmessungen an verschiedenen Objekten und Strukturen eingesetzt.

Eines dieser Systeme, ein Fächerecholot oder Multibeam Echosounder (MBES), erzeugt einen Schallfächer, der während der Messung über den Seeboden oder das abzubildende Objekt bewegt wird. Die Position der Sonar-Antenne wird hierbei kontinuierlich GPS-referenziert aufgezeichnet, sodass die einzelnen Bildschichten anschließend positionsrichtig zusammengefügt werden können, um eine exakte Repräsentation der vermessenen Struktur zu generieren. Das System eignet sich für alle Messungen an unbewegten Strukturen aus Distanzen bis zu 15 m Entfernung.

3D-Bildgebung in Echtzeit

Sollen Bewegungsvorgänge abgebildet oder Arbeitsprozesse unter Wasser visualisiert werden, so ist eine volumetrische Bildgebung in Echtzeit notwendig. Hierzu wurden zwei weitere Sonar-Systeme entwickelt, die aufgrund ihrer Funktionsweise eine dreidimensionale Abbildung ihrer Umgebung aus einer festen Position heraus erlauben. Und dies mit derselben hohen räumlichen Auflösung wie das Fächerecholot. Eines der Systeme wird in einer druckbeständigen Variante aufgebaut, sodass sogar ein Einsatz in der Tiefsee bei bis zu 600 bar erfolgen kann. Auch eine Miniaturisierung der Systeme wird derzeit vorangetrieben.

Neben Systemen zur 3D-Visualisierung entwickelt das Fraunhofer IBMT derzeit weitere Sonar-Systeme, wie etwa einen sedimentpenetrierenden Sub-Bottom-Profiler zur zentimetergenauen Vermessung von Sedimentschichten im Seeboden.

Die gesamte Bandbreite der Sonar-Technologien stellt das Fraunhofer IBMT auf der diesjährigen OCEANS Konferenz in Aberdeen von 19. bis zum 22. Juni 2017 (Stand Nummer 4) vor. Hier können sich interessierte Industrieunternehmen und Forschungsgruppen über die Kompetenzen und Leistungen des Geschäftsfelds Sonar informieren.

Ansprechpartner:

Dipl.-Ing. Michael Ehrhardt
Geschäftsfeldleiter Sonar
Fraunhofer-Institut für Biomedizinische Technik IBMT
Joseph-von-Fraunhofer-Weg 1
66280 Sulzbach
Telefon: 06897 / 9071 330
Fax: 06897 / 9071 302
E-Mail: michael.ehrhardt@ibmt.fraunhofer.de
https://www.ultraschall.fraunhofer.de

Weitere Informationen:

https://www.ibmt.fraunhofer.de/
https://www.ibmt.fraunhofer.de/de/ibmt-kernkompetenzen/ibmt-ultraschall.html
https://www.ibmt.fraunhofer.de/de/ibmt-kernkompetenzen/ibmt-ultraschall/ibmt-son...

Dipl.-Phys. Annette Maurer | Fraunhofer-Institut für Biomedizinische Technik IBMT

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht So schnell erwärmen sich die Dauerfrostböden der Welt
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Mit Satelliten den Eisverlust von Gletschern messen
15.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klassisches Doppelspalt-Experiment in neuem Licht

Internationale Forschergruppe entwickelt neue Röntgenspektroskopie-Methode basierend auf dem klassischen Doppelspalt-Experiment, um neue Erkenntnisse über die physikalischen Eigenschaften von Festkörpern zu gewinnen.

Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neues Material soll Grenzen der Silicium-Elektronik überwinden

21.01.2019 | Energie und Elektrotechnik

water meets....Future - Abwasser nachhaltig nutzen

21.01.2019 | Ökologie Umwelt- Naturschutz

Inbetriebnahme eines 3D-Bewegungssimulators am "kunststoffcampus bayern“ in Weißenburg

21.01.2019 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics