Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

KIT wirbt zwei neue ERC Starting Grants der EU ein

24.06.2013
Kapillarsuspensionen ermöglichen, das Fließverhalten von Materialien gezielt einzustellen und neue Produkte zu entwickeln, wie Tinten für druckbare Elektronik oder mikroporöse Keramiken.

Mit solchen Suspensionen befasst sich eine Forschungsgruppe unter Leitung von Dr. Erin Koos. Um Mikrostrukturen, die wasserliebende und wasserabstoßende Eigenschaften vereinen, zur Hochdurchsatzuntersuchung von Zellen geht es in einer von Dr. Pavel Levkin geleiteten Forschungsgruppe. Mit diesen beiden Projekten hat das KIT nun je einen ERC Starting Independent Researcher Grant eingeworben.

Die Projekte erhalten eine Förderung von je rund 1,5 Millionen Euro, verteilt auf fünf Jahre. Mit dem Starting Independent Researcher Grant fördert der Europäische Forschungsrat (European Research Council – ERC) über das Programm „Ideen“ im 7. EU-Forschungsrahmenprogramm wegweisende Projekte von Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern. Ziel des Starting Grants, der als eine der begehrtesten Förderungen in Europa gilt, ist der Aufbau oder die Festigung eines unabhängigen exzellenten Forschungsteams. Der Starting Grant 2013 ist die sechste Ausschreibung. Insgesamt gingen mehr als 3 000 Anträge ein; nur rund ein Zehntel wird gefördert. Bereits bei vergangenen Ausschreibungen waren Wissenschaftler des KIT erfolgreich.

Die Forschungsgruppe „Capillary suspensions: a novel route for versatile, cost efficient and environmentally friendly material design (CapS)" unter Leitung von Dr. Erin Koos am Institut für Mechanische Verfahrenstechnik und Mechanik (MVM) des KIT befasst sich mit neuartigen Suspensionen, die maßgeschneiderte, kostengünstige und umweltfreundliche Materialien ermöglichen. Auf Suspensionen, das heißt Stoffgemischen aus einer Flüssigkeit und darin schwebenden, fein verteilten Festkörpern, basieren vielfältige Materialien wie innovative Nanotechnologieprodukte, Beschichtungen und Klebemittel, aber auch Alltagsprodukte wie Lebensmittel und Kosmetika. Das Fließverhalten einer Suspension muss genau auf das Fertigungsverfahren sowie die gewünschten Eigenschaften des Produkts abgestimmt sein.

Sogenannte kapillare Suspensionen können das Materialdesign revolutionieren: Wird der kontinuierlichen Phase einer Suspension eine geringe Menge – weniger als ein Prozent – Zweitflüssigkeit zugegeben, verändern sich die rheologischen Merkmale, das heißt Fließeigenschaften, der Suspension deutlich: Aus einer dünnflüssigen, schwach elastischen Suspension wird eine gelartige Struktur mit stark elastischen Eigenschaften. Mit zunehmendem Zweitphasenanteil steigen Fließgrenze und Viskosität um mehrere Größenordnungen an. Dieser Übergang lässt sich mit der Ausbildung von Kapillarkräften zwischen den beiden Flüssigkeiten und dem Feststoff erklären: Bei Kontakt mit engen Röhren, Spalten oder Hohlräumen zeigen Flüssigkeiten ein besonderes Verhalten, das auf die Oberflächenspannung der Flüssigkeiten und die Grenzflächenspannung zwischen Flüssigkeiten und fester Oberfläche zurückzuführen ist.

Kapillare Suspensionen erlauben es, Fließeigenschaften gezielt einzustellen, Gemische zu stabilisieren, Phasenseparation zu verhindern und Zusatzstoffe zu sparen. Sie ermöglichen innovative Produkte, wie Tinten für druckbare Elektronik, die ohne herkömmliche Stabilisatoren wie Polymere oder Tenside auskommen, hochporöse, offenporige Sinterwerkstoffe für Filter, Katalysatoren und Wärmetauscher, Kunststofffilme mit geringem Weichmacheranteil oder fettreduzierte Brotaufstriche auf Wasserbasis, die keine Emulgatoren benötigen.

Die Helmholtz-Forschungsgruppe „Chemical Engineering of Biofunctional Materials", geleitet von Dr. Pavel Levkin am Institut für Toxikologie und Genetik (ITG) des KIT entwickelt eine neue Plattform zur Hochdurchsatzuntersuchung von lebenden Zellen. Das sogenannte Hochdurchsatzscreening, bei dem Zehntausende bis Millionen von genetischen, biochemischen oder pharmakologischen Tests automatisiert durchgeführt werden, beschleunigt sowohl die grundlegende biologische Forschung als auch die Entdeckung neuer Arzneimittelwirkstoffe. Assays mit lebenden Zellen machen rund die Hälfte aller Hochdurchsatzscreenings aus. Bisherige Methoden erfordern allerdings einen hohen Aufwand oder unterliegen verschiedenen Anwendungsbeschränkungen. Die Forschungsgruppe von Dr. Pavel Levkin setzt für das Hochdurchsatzscreening von Zellen neuartige Mikrostrukturen ein, die wasserabstoßende und wasserliebende Eigenschaften in sich vereinen.

Sogenannte superhydrophobe-superhydrophile Mikroarrays ermöglichen hochdichte Felder von mikrofeinen Tröpfchen (DropletMicroarrays) oder von mikrofeinen Hydrogelpads (HydrogelMicroarrays). Die neue Plattform verbindet wasserliebende Mikrofasern, auf denen sich feinste Tröpfchen ausbilden, mit wasserabstoßenden Mikrofasern, die als Barrieren zwischen den Tröpfchen fungieren. Auf dieser Struktur, die einem fein karierten Gewebe ähnelt, lassen sich auf engem Raum viele isolierte Tröpfchen aneinanderreihen, deren Größe und Form genau festlegen und sogar Miniaturkanäle anlegen. Jedes Tröpfchen dient quasi als winziges dreidimensionales Reagenzglas, in dem die Forscher Zellen gezielt untersuchen und biochemischen Einflüssen aussetzen können.

Die Plattform wird es erlauben, auf einem einzigen Mikroarray bis zu 300 000 Experimente gleichzeitig durchzuführen. Individuelle Zellexperimente lassen sich in komplett isolierten Tröpfchen an bestimmten Stellen des Mikroarrays vornehmen. Die hydrophoben Barrieren verhindern Kreuzkontaminationen und Zellwanderungen. Analog dazu entwickeln die Wissenschaftler eine Plattform zum Hochdurchsatzscreening von Zellen in 3D-Hydrogel-Mikropads.

Erin Koos studierte Ingenieurwissenschaften und promovierte am California Institute of Technology über das Fließverhalten von feuchten Schüttgütern. Seit 2009 ist sie als Postdoc in der Gruppe Angewandte Mechanik (AME) am Institut für Mechanische Verfahrenstechnik und Mechanik (MVM) des KIT tätig und befasst sich mit Kapillarkräften in Suspensionen.

Pavel Levkin studierte Chemie und Chemieingenieurwesen am Moscow Institute of Fine Chemical Technology und promovierte an der Universität Tübingen über neuartige chirale Selektoren und chirale Polymere. Er wirkte als Postdoc an der University of California, Berkeley, und leitet seit 2010 die Helmholtz University Group „Chemical Engineering of Biofunctional Materials“ am Institut für Toxikologie und Genetik (ITG) des KIT und am Lehrstuhl Angewandte Physikalische Chemie der Universität Heidelberg.

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 4195, Fax: +49 721 608 43658, E-Mail:schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht 1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien
20.08.2018 | Leibniz Universität Hannover

nachricht EU-Millionenförderung für Deep-Learning-Projekt in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics