Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jairo Sinova erhält ERC-Förderung für die Entwicklung neuer Konzepte in der Spintronik

22.01.2014
ERC Synergy Grant in Höhe von knapp 10 Millionen Euro geht an Forschergruppe mit Beteiligung von Prof. Dr. Jairo Sinova, theoretischer Physiker an der JGU.

Prof. Dr. Jairo Sinova von der Johannes Gutenberg-Universität Mainz (JGU) erhält für Forschungsarbeiten auf dem Gebiet der Spintronik gemeinsam mit Projektpartnern in Großbritannien und Tschechien einen hoch begehrten ERC Synergy Grant.

Synergy Grants sind ein Förderinstrument des Europäischen Forschungsrates (ERC), um die Zusammenarbeit von herausragenden Wissenschaftlern bei zukunftsweisenden Projekten zu ermöglichen. Jeder einzelne der beteiligten Wissenschaftler muss zu den Spitzenforschern auf seinem speziellen Gebiet gehören und über ein hohes Maß an innovativem Potenzial verfügen, damit die Förderung gewährt wird.

Die Fördersumme für das Projekt „Spin-charge conversion and spin caloritronics at hybrid organic-inorganic interfaces“ beträgt 9,7 Millionen Euro bei einer Laufzeit von sechs Jahren bis Februar 2020. Beteiligt sind außer Jairo Sinova von der JGU Henning Sirringhaus von der University of Cambridge als Sprecher der Gruppe, Jörg Wunderlich von Hitachi Europe Limited und dem Institut für Physik der Tschechischen Akademie der Wissenschaften und Iain McCulloch vom Imperial College of Science, Technology and Medicine, London.

Jairo Sinova kam zu Jahresbeginn von der Texas A&M University an die Universität Mainz, nachdem er im Oktober 2013 eine der angesehenen Alexander von Humboldt-Professuren und damit den höchstdotierten deutschen Forschungspreis erhalten hatte. Sinova gilt als herausragender Wissenschaftler auf dem Gebiet der theoretischen Festkörperphysik. Er wurde an der JGU auf eine Professur für Theoretische Physik mit dem Schwerpunkt „Elektronische und magnetische Eigenschaften kondensierter Materie" berufen.

In dem vom ERC bewilligten Forschungsprojekt werden die Physiker aus Deutschland und Großbritannien an der Entwicklung neuer Konzepte in der Spintronik arbeiten. Die Spintronik nutzt den Eigendrehimpuls der Elektronen und nicht mehr deren elektrische Ladung wie beispielsweise in Siliziumchips.

Das Forscherteam hofft, durch die Kombination aus anorganischer Spintronik mit organischen Materialien bessere Ergebnisse zu erhalten als sie mit anorganischen Systemen alleine zu erreichen wären. Der Vorteil bei der Verwendung von Polymeren wäre die Flexibilität des Materials, die Kontrolle der physikalischen Eigenschaften und die vergleichsweise einfache Herstellung. Im Rahmen der gemeinsamen Forschungsarbeiten wird Sinova insbesondere für die Theorie und Simulationen verantwortlich zeichnen.

Der ERC Synergy Grant und die damit verbundenen Arbeiten stellen einen weiteren Baustein und eine ideale Ergänzung für das von der Humboldt-Stiftung unterstützte „Spin Phenomena Interdisciplinary Center (SPICE)“ dar. In diesem Zentrum möchte Sinova theoretische und experimentell arbeitende Gruppen aus unterschiedlichen Disziplinen in Mainz zusammenbringen, um Spinphänomene zu untersuchen.

ERC Synergy Grants wurden bisher in zwei Pilot-Ausschreibungen vergeben. Es handelt sich um die am höchsten dotierte EU-Förderung mit bis zu 15 Millionen Euro pro Projekt. Von den knapp 450 Anträgen in der zweiten Ausschreibung wurden 13 Vorschläge angenommen. Insgesamt werden nach zwei Ausschreibungsrunden somit nur 24 Projekte in ganz Europa gefördert.

Die Mittel werden für bahnbrechende Pionierforschung an Gruppen bestehend aus zwei bis vier Wissenschaftlern und ihren Teams vergeben. Die Förderung erhalten nur Forscher, die bereits bedeutende Errungenschaften vorweisen können und die mindestens seit zehn Jahren auf international höchstem Niveau erfolgreich gearbeitet haben. Ausschlaggebend für die Förderung des ERC ist allein die wissenschaftliche Exzellenz der Forschenden und ihres Forschungsprojekts. Damit ist ein ERC Grant auch als individuelle Auszeichnung zu verstehen.

Foto:
http://www.uni-mainz.de/bilder_presse/personal_08_sinova.jpg
Prof. Dr. Jairo Sinova
Foto/©: Peter Pulkowski
Weitere Informationen:
Univ.-Prof. Dr. Jairo Sinova
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-21284
Fax +49 6131 39-26267
E-Mail: sinova@uni-mainz.de
http://people.physics.tamu.edu/sinova/index.html
Weitere Links:
http://erc.europa.eu/
(European Research Council)
http://www.uni-mainz.de/presse/57972.php
Pressemitteilung „Johannes Gutenberg-Universität Mainz erhält Bewilligung für Humboldt-Professur in der Physik“)

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Klimafreundliche Energie aus Abwärme
20.12.2019 | Technische Universität München

nachricht Der DPG-Technologietransferpreis 2020 geht an Orcan Energy für die Nutzung von Abwärme für die CO2-freie Stromerzeugung
16.12.2019 | Deutsche Physikalische Gesellschaft (DPG)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics