Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jacobs-Professoren entwickeln neues Nachweisfahren für biologisch wertvolle Substanzen

07.11.2012
Der Biochemiker Prof. Sebastian Springer und der Biophysiker Prof. Mathias Winterhalter von der Jacobs University entwickeln zusammen mit dem Biotechnologen Prof. Gerd Klöck von der Hochschule Bremen ein neuartiges biotechnologisches Nachweisverfahren.

Mit diesem Verfahren kann die biotechnologische Produktion beispielsweise von Insulin oder Antikörpern für die Immuntherapie zukünftig besser überwacht werden.

Das Bundesministerium für Bildung und Forschung fördert das Projekt mit 988.000 Euro im Rahmen des bundesweiten "Strategieprozesses Biotechnologie 2020+". Die Bundesregierung will damit die weltweite Spitzenstellung Deutschlands in der Biotechnologie erhalten und ausbauen.

Viele medizinisch wichtige Proteine, wie zum Beispiel das Hormon Insulin oder Antikörper für die Immuntherapie, werden biotechnologisch hergestellt. Bakterien oder auch Mäusezellen wachsen in großen Rührkesseln in einer Nährlösung und scheiden das gewünschte Protein aus. Diese Herstellungsprozesse können bislang aber nur unzulänglich überwacht werden, da die momentan erhältlichen Sensoren nur wenige Messgrößen nachweisen können. Verunreinigungen, zum Beispiel unerwünschte Produkte oder bakterielle Infektionen, werden daher oft zu spät erkannt und hohe Kosten sind die Folge.

Sebastian Springer, und seine Partner wollen nun ein universelles Nachweisverfahren entwickeln. Es basiert auf Mikrokapseln aus Kunststoff, die nur einen tausendstel Millimeter groß sind. Sie binden an die Substanz, die nachgewiesen werden soll, und ihre Ansammlung wird durch eine optische Methode detektiert. Damit kann prinzipiell jede beliebige Substanz, ob Protein, DNA oder Chemikalie, schnell und einfach nachgewiesen werden.

Das Bremer Projekt nimmt im Strategieprozess Biotechnologie 2020+ der Bundesregierung eine Sonderstellung ein: Es spezialisiert sich nicht auf einen bestimmten Produktionsprozess, sondern entwickelt Nachweisverfahren, die im Baukastenprinzip in vielen Produktionsprozessen eingesetzt werden können. So kann das neue Messverfahren helfen, Verunreinigungen in Zellkulturen früher als bisher aufzuspüren und zu beseitigen; aber es kann auch die Entstehung des Produkts "live" verfolgen und damit den industriellen Biotechnologen helfen, ihre Produktionsbedingungen optimal einzustellen. Rund 787.000 Euro der Förderung gehen an die Jacobs University.

"Mathias Winterhalter und ich arbeiten schon lange gemeinsam an ähnlichen Projekten, die Biophysik, Biotechnologie und Zellbiologie verbinden", erläutert Sebastian Springer, Professor of Biochemistry and Cell Biology an der Jacobs University. "Seit 2006 untersuchen wir das Verhalten der Mikrokapseln in biologischen Systemen. In einem Gespräch mit Gerd Klöck von der Hochschule Bremen kam uns vor etwa zwei Jahren die Idee, unsere Erfahrung zur Entwicklung eines Messverfahrens einzusetzen, und das passte natürlich hervorragend in das Förderprogramm 'Biotechnologie 2020+' des BMBF. Wir freuen uns sehr auf die Interaktion mit den anderen Projekten des Strategieprozesses."

Die drei Forscher sehen ihr Vorhaben als ein hervorragendes Beispiel, wie die Jacobs University sich erfolgreich in die Bremer Forschungslandschaft eingebettet hat, und wie Jacobs und die Hochschule Bremen ihre jeweiligen Schwerpunkte vorteilhaft kombinieren. "Die biotechnologische Expertise von Gerd Klöck an der Hochschule hat das Ziel der Arbeiten bestimmt, und unsere physikalischen und biologischen Vorarbeiten haben den Weg dorthin abgesteckt", kommentiert Springer. "Alleine hätte keine der beiden Institutionen diese Drittmittel gewinnen und dieses Projekt durchführen können." Die Zusammenarbeit zwischen den drei Professoren erstreckt sich auch auf die Lehre: sie betreuen gemeinsam Master-Studenten, und Gerd Klöck hält in diesem Jahr eine Vorlesung im Biotechnologie-Studiengang der Jacobs University.

Auch für die Zukunft gibt es schon große Pläne, wie Prof. Springer anmerkt. "Wenn das Messverfahren etabliert ist, wollen wir es so weiterentwickeln, dass man Messungen auch innerhalb von lebenden Zellen vornehmen kann."

Fragen zum Forschungsprojekt beantwortet:
Sebastian Springer | Professor of Biochemistry and Cell Biology
Email: s.springer@jacobs-university.de | Tel.: +49 421 200-3243

Judith Ahues | idw
Weitere Informationen:
http://www.jacobs-university.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Der bundesweite Bewerbungsprozess für den Corporate Health Award 2020 startet ab sofort
02.04.2020 | Corporate Health Initiative

nachricht Klimafreundliche Energie aus Abwärme
20.12.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics