Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Windgeschwindigkeitsmessung – PTB entwickelt Lidar mit höchster Auflösung

02.06.2016

Das neuartige Doppler-Lidar-System kann in großen Messhöhen eine Alternative zu Messmasten mit Windmessern darstellen

Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) ist es gelungen, ein mobiles Messsystem zu entwickeln, mit dem sich die Windgeschwindigkeit und die Windrichtung vom Boden aus mit höchster Genauigkeit und Ortsauflösung messen lässt.


Das bistatische Doppler-Lidar-System der PTB kann in jedem Gelände zum Einsatz kommen.

(Foto: PTB)


Die Grafik zeigt das monostatische (links) Lidar-System im Vergleich zum bistatischen Lidar-System.

(Abb.: PTB)

Bisher wird die Windgeschwindigkeit, anhand derer sich der potenzielle Ertrag eines künftigen Windparks berechnen lässt, mittels kalibrierter Windmesser (Anemometer) gemessen, die auf Messmasten montiert sind. Insbesondere in großen Messhöhen könnte das System der PTB künftig eine Alternative zu dieser aufwendigen und kostspieligen Technik darstellen. Erste Testmessungen waren bereits erfolgversprechend. Die Messergebnisse des mobilen PTB-Systems und eines Messmastes wichen um weniger als 0,5 Prozent voneinander ab.

Wer Geld für den Bau eines Windparks bereitstellt, will wissen, ob sich die Investition lohnt. Und ob es sich lohnt, verrät die Messung der Windgeschwindigkeiten am künftigen Standort. Denn darüber lässt sich die erwartete elektrische Energie ermitteln, die dort pro Jahr erzeugt werden kann.

Für die Windpotenzialanalyse werden derzeit Messmasten genutzt, an denen Anemometer installiert sind. Doch das Errichten dieser Masten für die Windmessung ist aufwendig und die Kosten steigen mit der Nabenhöhe moderner Windräder.

Daher wird die Messmast-Technik bei zunehmender Anlagenhöhe durch bodengestützte Lidar-Systeme ergänzt. Konventionelle (monostatische) Lidar-Systeme setzen jedoch für genaue Messungen räumlich und zeitlich gleiche Windverhältnisse voraus, was abhängig von der Geländestruktur nicht immer gegeben ist.

Die PTB hat daher das Lidar-System weiterentwickelt. Erprobt wird derzeit ein sogenanntes bistatisches Doppler-Lidar-System, das mithilfe eines Lasers (bzw. Senders) und dreier Empfänger vom Boden aus die Windgeschwindigkeit sowie die Windrichtung in einer Höhe von bis zu 300 Meter bestimmen kann. Erste Versuchsmessungen Mitte 2015 und Anfang 2016 waren bereits von Erfolg gekrönt:

Die Messungen des auf einem vier Meter langen Anhänger montierten mobilen Messsystems der PTB und eines kalibrierten Messmastes wichen um weniger als 0,5 Prozent voneinander ab. „Langfristig wollen wir ein System entwickeln, das die Rückführung der Windgeschwindigkeit auf die SI-Basiseinheiten mit kleinen Messunsicherheitswerten auch in komplexem Gelände ermöglicht“, sagt Michael Eggert von der Arbeitsgruppe Strömungsmesstechnik in der PTB.

Wie der Name sagt, macht sich das System den Doppler-Effekt zu Nutzen. Man denke an das Martinshorn eines Feuerwehrautos: Fährt das Auto auf uns zu, ist der Ton der Sirene schrill und hoch. Doch nach dem Vorbeifahren wird der Ton immer tiefer. Denn die Schallwellen werden in Fahrtrichtung zusammengeschoben und beim Wegfahren auseinandergezogen – die Frequenz der Wellen verändert sich. Anhand der Frequenzveränderung lässt sich mithilfe mehrerer Empfänger der Geschwindigkeitsvektor (Geschwindigkeit und Richtung) bestimmen.

Nach diesem Prinzip funktioniert das bistatische Doppler-Lidar-System. Allerdings ist das Feuerwehrauto in diesem Fall ein Partikel (Aerosol) in der Luft. An diesem wird das Licht des Lasers in alle Richtungen gestreut. So können Teile des Lichts von den drei am Boden befindlichen Empfängern erfasst werden. Der Sendestrahl des Lasers und die Empfangsstrahlen der Empfänger sind auf einen gemeinsamen Punkt gerichtet. An diesem Messort, einem Messvolumen mit einem Durchmesser von wenigen Millimetern und einer Länge von einigen Dezimetern, kann die Geschwindigkeit und Flugrichtung jedes Teilchens ausgewertet werden.

Damit hat das System einen deutlichen Vorteil gegenüber herkömmlichen Lidar-Systemen, bei denen der Sendestrahl des Lasers mit einem Empfangsstrahl überlagert ist. Bei dieser Technik wird der Laserstrahl geschwenkt und es wird jeweils an unterschiedlichen Orten mit einem Messvolumen von etwa 20 Metern Länge gemessen. Der Windvektor lässt sich so nur bei einem homogenen Strömungsfeld bestimmen. Andernfalls kann die Messunsicherheit bis zu 10 Prozent betragen, was keine Alternative zur Messmast-Technik darstellt. Das bistatische System der PTB hingegen könnte den kalibrierten Messmasten echte Konkurrenz machen. Zumal es durch seinen Aufbau in sich auf die SI-Einheiten rückführbar ist. Denn die gemessene Geschwindigkeit lässt sich auf bereits bekannte, kalibrierte Größen rückführen: die Laserwellenlänge, die Empfängergeometrie (Länge) sowie die Zeitbasis zur Frequenz- und Laufzeitbestimmung. „So haben wir künftig ein Bezugsnormal, das nicht kalibriert werden muss“, erklärt Eggert.
(ms/ptb)

Ansprechpartner:
Dr.-Ing. Michael Eggert, PTB-Arbeitsgruppe 1.41 Strömungsmesstechnik, Telefon: (0531) 592-1317, E-Mail: michael.eggert@ptb.de

Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fit für die industrielle Fertigung? Aluminium-Batterien im Fokus des Verbundvorhabens „ProBaSol“ an der TU Freiberg
21.02.2020 | Technische Universität Bergakademie Freiberg

nachricht Haben ein Auge für Farben: druckbare Lichtsensoren
19.02.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics