Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Windgeschwindigkeitsmessung – PTB entwickelt Lidar mit höchster Auflösung

02.06.2016

Das neuartige Doppler-Lidar-System kann in großen Messhöhen eine Alternative zu Messmasten mit Windmessern darstellen

Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) ist es gelungen, ein mobiles Messsystem zu entwickeln, mit dem sich die Windgeschwindigkeit und die Windrichtung vom Boden aus mit höchster Genauigkeit und Ortsauflösung messen lässt.


Das bistatische Doppler-Lidar-System der PTB kann in jedem Gelände zum Einsatz kommen.

(Foto: PTB)


Die Grafik zeigt das monostatische (links) Lidar-System im Vergleich zum bistatischen Lidar-System.

(Abb.: PTB)

Bisher wird die Windgeschwindigkeit, anhand derer sich der potenzielle Ertrag eines künftigen Windparks berechnen lässt, mittels kalibrierter Windmesser (Anemometer) gemessen, die auf Messmasten montiert sind. Insbesondere in großen Messhöhen könnte das System der PTB künftig eine Alternative zu dieser aufwendigen und kostspieligen Technik darstellen. Erste Testmessungen waren bereits erfolgversprechend. Die Messergebnisse des mobilen PTB-Systems und eines Messmastes wichen um weniger als 0,5 Prozent voneinander ab.

Wer Geld für den Bau eines Windparks bereitstellt, will wissen, ob sich die Investition lohnt. Und ob es sich lohnt, verrät die Messung der Windgeschwindigkeiten am künftigen Standort. Denn darüber lässt sich die erwartete elektrische Energie ermitteln, die dort pro Jahr erzeugt werden kann.

Für die Windpotenzialanalyse werden derzeit Messmasten genutzt, an denen Anemometer installiert sind. Doch das Errichten dieser Masten für die Windmessung ist aufwendig und die Kosten steigen mit der Nabenhöhe moderner Windräder.

Daher wird die Messmast-Technik bei zunehmender Anlagenhöhe durch bodengestützte Lidar-Systeme ergänzt. Konventionelle (monostatische) Lidar-Systeme setzen jedoch für genaue Messungen räumlich und zeitlich gleiche Windverhältnisse voraus, was abhängig von der Geländestruktur nicht immer gegeben ist.

Die PTB hat daher das Lidar-System weiterentwickelt. Erprobt wird derzeit ein sogenanntes bistatisches Doppler-Lidar-System, das mithilfe eines Lasers (bzw. Senders) und dreier Empfänger vom Boden aus die Windgeschwindigkeit sowie die Windrichtung in einer Höhe von bis zu 300 Meter bestimmen kann. Erste Versuchsmessungen Mitte 2015 und Anfang 2016 waren bereits von Erfolg gekrönt:

Die Messungen des auf einem vier Meter langen Anhänger montierten mobilen Messsystems der PTB und eines kalibrierten Messmastes wichen um weniger als 0,5 Prozent voneinander ab. „Langfristig wollen wir ein System entwickeln, das die Rückführung der Windgeschwindigkeit auf die SI-Basiseinheiten mit kleinen Messunsicherheitswerten auch in komplexem Gelände ermöglicht“, sagt Michael Eggert von der Arbeitsgruppe Strömungsmesstechnik in der PTB.

Wie der Name sagt, macht sich das System den Doppler-Effekt zu Nutzen. Man denke an das Martinshorn eines Feuerwehrautos: Fährt das Auto auf uns zu, ist der Ton der Sirene schrill und hoch. Doch nach dem Vorbeifahren wird der Ton immer tiefer. Denn die Schallwellen werden in Fahrtrichtung zusammengeschoben und beim Wegfahren auseinandergezogen – die Frequenz der Wellen verändert sich. Anhand der Frequenzveränderung lässt sich mithilfe mehrerer Empfänger der Geschwindigkeitsvektor (Geschwindigkeit und Richtung) bestimmen.

Nach diesem Prinzip funktioniert das bistatische Doppler-Lidar-System. Allerdings ist das Feuerwehrauto in diesem Fall ein Partikel (Aerosol) in der Luft. An diesem wird das Licht des Lasers in alle Richtungen gestreut. So können Teile des Lichts von den drei am Boden befindlichen Empfängern erfasst werden. Der Sendestrahl des Lasers und die Empfangsstrahlen der Empfänger sind auf einen gemeinsamen Punkt gerichtet. An diesem Messort, einem Messvolumen mit einem Durchmesser von wenigen Millimetern und einer Länge von einigen Dezimetern, kann die Geschwindigkeit und Flugrichtung jedes Teilchens ausgewertet werden.

Damit hat das System einen deutlichen Vorteil gegenüber herkömmlichen Lidar-Systemen, bei denen der Sendestrahl des Lasers mit einem Empfangsstrahl überlagert ist. Bei dieser Technik wird der Laserstrahl geschwenkt und es wird jeweils an unterschiedlichen Orten mit einem Messvolumen von etwa 20 Metern Länge gemessen. Der Windvektor lässt sich so nur bei einem homogenen Strömungsfeld bestimmen. Andernfalls kann die Messunsicherheit bis zu 10 Prozent betragen, was keine Alternative zur Messmast-Technik darstellt. Das bistatische System der PTB hingegen könnte den kalibrierten Messmasten echte Konkurrenz machen. Zumal es durch seinen Aufbau in sich auf die SI-Einheiten rückführbar ist. Denn die gemessene Geschwindigkeit lässt sich auf bereits bekannte, kalibrierte Größen rückführen: die Laserwellenlänge, die Empfängergeometrie (Länge) sowie die Zeitbasis zur Frequenz- und Laufzeitbestimmung. „So haben wir künftig ein Bezugsnormal, das nicht kalibriert werden muss“, erklärt Eggert.
(ms/ptb)

Ansprechpartner:
Dr.-Ing. Michael Eggert, PTB-Arbeitsgruppe 1.41 Strömungsmesstechnik, Telefon: (0531) 592-1317, E-Mail: michael.eggert@ptb.de

Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics