Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erster Nachweis von strominduzierten Kräften zwischen zwei Molekülen

05.11.2019

Einem Forscherteam um Professor Jörg Kröger, Leiter des Fachgebietes Experimentalphysik der TU Ilmenau, ist es in enger Zusammenarbeit mit theoretischen Physikern der Technischen Universität Dänemark gelungen, strominduzierte Kräfte in einem Kontakt aus genau zwei C60-Molekülen nachzuweisen. Die erzielten weltweit einzigartigen Ergebnisse sind bedeutsam für das grundlegende Verständnis kleinster elektrischer Kontakte und damit ihre Anwendung in miniaturisierten elektronischen Bauelementen. Sie wurden in der jüngsten Ausgabe der renommierten Fachzeitschrift „Nano Letters“ veröffentlicht.

In ihrem Artikel „Nonequilibrium Bond Forces in Single-Molecule Junctions“ zeigen die Wissenschaftler auf, dass die strominduzierten Kräfte deutlich hervortreten, wenn die Moleküle im Begriff sind, eine chemische Bindung einzugehen.


Schematische Darstellung des Kontakts aus zwei C60-Molekülen. Im Experiment wird dieser Kontakt in einem kombinierten Rastertunnel- und Rasterkraftmikroskop hergestellt.

Abbildung: TU Ilmenau

Diese Studie repräsentiert den weltweit ersten eindeutigen Nachweis von strominduzierten Kräften in einem molekularen Kontakt.

Neben der exzellenten theoretischen Unterstützung liegt der Erfolg der Arbeit darin begründet, dass die Experimentatoren den in den Simulationen verwendeten Kontakt aus zwei C60-Molekülen und Kupfer-Elektroden (siehe Abbildung) durch die Manipulation von Materie auf atomarer Skala nachgebildet haben.

Dieser im Experiment erreichte Modellcharakter des Kontakts erlaubt einen direkten Vergleich zwischen den Ergebnissen der komplexen Transportrechnungen in Dänemark und den erzielten experimentellen Ergebnissen in Ilmenau.

Bei der chemischen Bindung zweier Moleküle bilden sich bindende und antibindende Orbitale aus. Die Stärke der Bindung wird von der Besetzung dieser Orbitale mit Elektronen bestimmt. An dieser Stelle setzt die Motivation für die deutsch-dänische Zusammenarbeit an. Ein elektrischer Strom durch einen molekularen Kontakt wird über Orbitale geleitet.

Dabei werden bindende und antibindende Orbitale abweichend vom Gleichgewicht der chemischen Bindung ohne Strom besetzt. Die Bindung könnte also gelockert oder gestärkt, die Kraft zwischen den Molekülen abstoßend oder anziehend ausfallen.

Im Einklang mit den theoretischen Vorhersagen finden die Experimentatoren eine anziehende Kraft zwischen den C60-Molekülen bei Stromfluss, unabhängig von der Polung der Spannungsquelle. Kurz: Bringt man die Besetzung der an der Bindung beteiligten Orbitale durch Stromleitung aus dem Gleichgewicht, dann ersteht eine attraktive Wechselwirkung zwischen den Bindungspartnern.

Für makroskopische elektrische Kontakte ist schon lange das Phänomen der Elektromigration bekannt, bei dem ein elektrischer Strom über die Grenzfläche aus zwei unterschiedlichen Materialien eine unerwünschte Durchmischung der Materialien hervorruft.

Man deutet die Elektromigration mit Hilfe des Impulsübertrags der stromtragenden Elektronen auf die Atome der Materialien und spricht häufig von der Wirkung des Elektronenwindes auf die Atompositionen.

Das Analogon zum Elektronenwind in der molekularen Elektronik, wo Kontakte nur noch aus einzelnen Molekülen oder Atomen bestehen, sind, wie die Arbeit von Prof. Jörg Kröger zeigt, Kräfte, die aus der gleichgewichtsfernen Besetzung von Molekülorbitalen herrühren.

Die Gruppe von Prof. Jörg Kröger beschäftigt sich seit einigen Jahren mit den Kräften auf atomarer Skala, die häufig im Piko-Newton-Bereich liegen. Dazu wird ein im Jahr 2015 in Betrieb genommenes Rasterkraftmikroskop verwendet, das Kräfte aus Frequenzänderungen einer schnell schwingenden Sonde ermittelt.

Ein prominentes Beispiel ist die Bestimmung von Kräften zum Verschieben einzelner Atome auf Oberflächen (Phys. Rev. B 98, 235420 (2018)), womit wichtige Erkenntnisse zum atomaren Ursprung der Reibung erzielt wurden. Weiter hat sich kürzlich gezeigt, dass der Übergang zwischen van-der-Waals-Anziehung und Pauli-Abstoßung zweier Moleküle von der angelegten Spannung abhängt (New J. Phys. 21, 103041 (2019)).

Das Ziel der Arbeiten von Prof. Jörg Kröger ist im Allgemeinen das Aufspüren von physikalischen Mechanismen, um der „Natur in die Karten zu schauen‟. Losgelöst von Anwendungen werden Mo-dellsysteme experimentell aufgebaut und untersucht. Dies erfordert extreme Bedingungen im Expe-riment, wie ein Ultrahochvakuum (10-9 Pa) und tiefe Temperaturen (≤ -268 °C).

Wissenschaftliche Ansprechpartner:

Prof. Jörg Kröger
Leiter Fachgebiet Experimentalphysik
Telefon: +49 3677 69-3609
E-Mail: joerg.kroeger@tu-ilmenau.de

Originalpublikation:

https://pubs.acs.org/doi/full/10.1021/acs.nanolett.9b02845

Bettina Wegner | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-ilmenau.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Haben ein Auge für Farben: druckbare Lichtsensoren
19.02.2020 | Karlsruher Institut für Technologie

nachricht Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer

19.02.2020 | Informationstechnologie

Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen

19.02.2020 | Biowissenschaften Chemie

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics