Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Lichtblitz mit LED für Quali-Checks

29.01.2010
Siemens-Forscher haben die weltweit schnellste LED-Blitzlampe zur Qualitätsprüfung entwickelt.

Mit der leistungsstarken Lichtquelle, die eine extrem kurze Belichtung erlaubt, können schnelle Fertigungsabläufe direkt überwacht werden. Die Kamera kann relativ schnell bewegte Gegenstände mit hoher optischer Auflösung scharf abbilden. Der Hochgeschwindigkeitsblitz wurde für ein Inspektionssystem für gedruckte Elektronik entwickelt. Er verbraucht weniger Energie und heizt den Messraum nicht so stark auf wie die bisher verwendeten Halogenlampen.


Qualitätskontrollen sind oft optischer Art, das heißt, eine Kamera nimmt ein digitales Bild auf, welches anschließend analysiert wird. Oft läuft aber die Fertigung so schnell, dass herkömmliche Kamerasysteme kein scharfes Bild mehr liefern. Die Tests werden dann ans Ende der Fertigung ausgelagert und pro Produktionseinheit durchgeführt. Wird ein Fehler entdeckt, ist seit dem letzten Test Ausschuss produziert worden. Will man hingegen in der Fertigungslinie testen, braucht man teilweise Beleuchtungszeiten von weit unter einer millionstel Sekunde. Eine so schnelle Lichtquelle mit genügend hoher Leistung gibt es bisher nicht. Die Alternative ist Dauerlicht und eine Kamera mit extrem kurzen Verschlusszeiten. Die ist jedoch relativ teuer und hat darüber hinaus den Nachteil, dass die Lichtquelle den Messraum aufheizt.

Die Forscher von Siemens Corporate Technology (CT) verwenden mehrere LEDs für ihre neue, leistungsstarke und ultraschnelle Lichtquelle. Der Hochgeschwindigkeitsblitz bietet Belichtungszeiten von 0,3 millionstel Sekunden (300 Nanosekunden). Bei gewöhnlichen Fotoblitzen betragen die kürzesten Beleuchtungszeiten 50 Mikrosekunden und bei industriellen Stroboskopen eine Mikrosekunde. Die LED-Blitzleistung lässt sich bis zu einem Wert von über zwölf Kilowatt sehr fein einstellen. Der Blitz kombiniert LEDs verschiedener Wellenlängen, damit die Lichtfarbe auf das jeweilige zu testende Produkt abgestimmt werden kann.

Der Blitz wurde im Rahmen des vom Bundesministerium für Bildung und Forschung geförderten Projekts MaDriX entwickelt. Er könnte in vielen Anwendungen bei Siemens sowie bei anderen Unternehmen eingesetzt werden und bietet die Möglichkeit, Fertigungsabläufe zu optimieren und Prüf- sowie Energiekosten einzusparen. (RN 2010.01.8)

Dr. Norbert Aschenbrenner | Siemens ResearchNews
Weitere Informationen:
http://www.siemens.de/innovation

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forschungsprojekt kombiniert Digitalisierung und Verfahrenstechnik
11.11.2019 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Superkritisch,super gut! Dresdner Wissenschaftler entwickeln umweltschonende Energietechnologie mit superkritischem CO2
08.11.2019 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Im Focus: Verzerrte Atome

Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen. Die heftige Anregung des Elektronenpaars in einem Heliumatom konkurriert so stark mit dem ultraschnellen Zerfall des angeregten Zustands, dass vorübergehend sogar Besetzungsinversion auftreten kann. Verschiebungen der Energie elektronischer Übergänge in zweifach geladenen Neonionen beobachteten die Wissenschaftler mittels transienter Absorptionsspektroskopie (XUV-XUV Pump-Probe).

Ein internationales Team unter Leitung von Physikern des MPIK veröffentlicht seine Ergebnisse zur stark getriebenen Zwei-Elektronen-Anregung in Helium durch...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

Automatisiertes Fahren und Recht

06.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine RNAs verbinden Immunsystem und Gehirnzellen

11.11.2019 | Biowissenschaften Chemie

Wie sich das Zika-Virus verbreiten könnte

11.11.2019 | Biowissenschaften Chemie

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics