Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reversible Brennstoffzelle bricht Wirkungsgrad-Rekord

19.12.2018

Wissenschaftler des Forschungszentrums Jülich haben ein hochgradig effizientes Brennstoffzellen-System in Betrieb genommen, das einen elektrischen Wirkungsgrad im Wasserstoffbetrieb von über 60 Prozent erzielt. Ein so hoher Wert wurde bis jetzt von keinem anderen Forscherteam weltweit berichtet. Und die Anlage weist noch eine weitere Besonderheit auf: Die neu entwickelten reversiblen Hochtemperatur-Brennstoffzellen können nicht nur Strom erzeugen, sondern lassen sich auch für die Herstellung von Wasserstoff durch Elektrolyse nutzen.

Reversible Brennstoffzellen, englische Bezeichnung „reversible Solid Oxide Cell“, kurz rSOC, verbinden praktisch zwei Geräte in einem. Der Zelltyp ist daher in besonderer Weise für den Bau von Anlagen geeignet, die Elektrizität in Form von Wasserstoff zwischenspeichern und diesen zu einem späteren Zeitpunkt wieder rückverstromen können.


Prof. Ludger Blum neben reversibler Hochtemperatur-Brennstoffzelle am Institut für Energie- und Klimaforschung (IEK-3)

Copyright: Forschungszentrum Jülich / R.-U. Limbach

Eine derartige Speichertechnologie könnte eine wichtige Rolle bei der Energiewende spielen. Sie wird benötigt, um Schwankungen erneuerbarer Energien auszugleichen und dem Auseinanderlaufen von Angebot und Nachfrage entgegenzuwirken. Zusätzlich bietet sich der Einsatz für abgelegene Stationen auf Inseln und Bergen an, um dort eine autarke Energieversorgung sicherzustellen.

Die außergewöhnliche Eigenschaft der Reversibilität weisen nur Hochtemperatur-Brennstoffzellen, kurz SOFC, englisch „Solid Oxide Fuel Cell“, auf, die bei etwa 800 Grad Celsius betrieben werden. Aufgrund der hohen Temperatur können für diesen Brennstoffzellentyp unedlere und kostengünstigere Materialien als für Niedrigtemperatur-Brennstoffzellen verwendet werden.

Gleichzeitig arbeiten Hochtemperatur-Brennstoffzellen höchst effizient. Anders als Niedertemperatursysteme, deren Wirkungsgrad im Betrieb mit Wasserstoff auf etwa 50 Prozent begrenzt ist, können Hochtemperatur-Brennstoffzellen auch einen deutlich höheren Wirkungsgrad erzielen.

Wissenschaftlern des Forschungszentrums Jülich ist es nun gelungen, den Wirkungsgrad noch weiter zu steigern und erstmals einen Wert von über 60 Prozent zu realisieren. Für ihre Anlage ermittelten die Forscher im Testbetrieb einen elektrischen Wirkungsgrad von 62 Prozent.

„Möglich wurde dies durch ein verbessertes Stackdesign in Verbindung mit einer optimierten und hochintegrierten Anlagentechnik, die mehr als 97 Prozent des zugeführten Wasserstoffs elektrochemisch umsetzt“, erklärt Prof. Ludger Blum vom Jülicher Institut für Energie- und Klimaforschung (IEK-3).

Eine dieser Verbesserungen liegt in der Dimensionierung der Wandlereinheit (engl. „Stack“). „Unser Stack kommt auf eine Leistung von 5 Kilowatt, womit in etwa der Stromverbrauch zweier Haushalte gedeckt werden könnte.

Bislang musste man immer mehrere Einheiten im Kilowatt-Maßstab kombinieren, um eine vergleichbare Leistung zu erreichen“, erläutert Ludger Blum. Der Forscher hofft, dass sich so auch die Herstellungskosten senken lassen, da insgesamt weniger Einheiten für den Bau leistungsstarker Anlagen benötigt werden.

Im Elektrolysemodus, wenn das System Wasserstoff produziert, lässt sich die Jülicher Anlage sogar noch mit einer deutlich höheren Leistung fahren. Bei einer Stromaufnahme des Stacks von 14,9 Kilowatt erzeugt sie dann pro Stunde 4,75 Kubikmeter (Nm3/h) Wasserstoff, was einem Systemwirkungsgrad von 70 Prozent entspricht. Damit arbeitet die Versuchsanlage bereits jetzt effizienter als alkalische und Polymerelektrolyt-Elektrolyseure, die auf 60 bis 65 Prozent kommen und heute Standard sind.

„Die Elektrolyse funktioniert für den Anfang schon recht gut, hier sehen wir aber auf jeden Fall noch ein Verbesserungspotenzial“, berichtet Ludger Blum. Hochtemperatur-Systeme von anderen Entwicklern, die speziell für die Elektrolyse optimiert wurden, erreichen heute Wirkungsgrade von über 80 Prozent. Im Brennstoffzellenmodus arbeiten diese dann allerdings nicht so effizient, wie das neue Jülicher System.

Die Jülicher Forscher haben bereits weitere Optimierungen angedacht, mit denen sie den sogenannten „Round-trip“-Wirkungsgrad weiter steigern wollen. Die Kennzahl beschreibt, welcher Wirkungsgrad bei der Wiederverstromung, also nach Herstellung von Wasserstoff und Rückverstromung, übrig bleibt. Die Wissenschaftler wollen den Wert von aktuell 43 Prozent auf über 50 Prozent verbessern.

Für einen Wasserstoffspeicher wäre dieser Wert sensationell, auch wenn die Technologie in dieser Hinsicht nicht mit Batteriespeichern mithalten kann, die teilweise auf über 90 Prozent kommen. Dafür bieten Brennstoffzellen-Systeme andere Vorteile. Da der Energiewandler, die Brennstoffzelle, und der Energieträger Wasserstoff klar voneinander getrennt sind, kann immer wieder neu Wasserstoff zugeführt oder auch abgeleitet werden. Der Größe der speicherbaren Energiemenge sind so kaum Grenzen gesetzt.

Wissenschaftliche Ansprechpartner:

Prof. Ludger Blum
Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik (IEK-3)
Forschungszentrum Jülich
Tel.: 02461 61-6709
E-Mail: l.blum@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2018/2018-12-18-bre... Pressemitteilung des Forschungszentrums Jülich

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Batterieforschung: Lithium kommt in Sicht
25.05.2020 | Philipps-Universität Marburg

nachricht Krankenhauskeime mit UVC-Leuchtdioden bekämpfen
25.05.2020 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics