Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photovoltaik-Wechselrichter mit hochintegriertem Konzept verspricht Kostensenkung

11.04.2017

Wirkungsgrad und Zuverlässigkeit der solaren Stromerzeugung werden wesentlich von den Eigenschaften des Photovoltaik (PV)-Wechselrichters bestimmt. Als zentrales Element einer PV-Anlage wandelt er den von den PV-Modulen erzeugten Gleichstrom in Wechselstrom für das Netz. Bislang steht bei der Forschung im Bereich leistungselektronischer Wandler meist die Erhöhung der Leistungsdichte durch den Einsatz neuster Halbleitertechnologien und Schaltungstopologien im Fokus. Um dem stetig steigenden Kostendruck einer globalisierten PV-Wirtschaft zu begegnen, sind jedoch neue Forschungsansätze erforderlich.

Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben gemeinsam mit Partnern untersucht, wie eine neue Generation von PV-Wechselrichtern aussehen kann, die dem Aspekt der Kostenoptimierung Rechnung trägt. Aufbau-, Kühlungs- und Verbindungstechnik wurden dabei als zentrale Stellschrauben identifiziert.


Schnittbild durch das PV-Wechselrichtermodell.

©Fraunhofer ISE

Im Projektnamen steckt das Ziel: »PV-Pack: Optimierte Kühlungs-, Verbindungs- und Aufbautechnik für effiziente, schnell getaktete und hochintegrierte Photovoltaik-Wechselrichter der Leistungsklasse 10 – 40 kW«. Um dieses zu erreichen hat sich mit der SMA Solar Technology AG, dem Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, der Phoenix Contact GmbH & Co. KG und dem Fraunhofer ISE ein hochqualifiziertes Konsortium zusammengefunden.

Dabei ergänzen sich die Verbundpartner ideal auf den Gebieten thermisch hochleitfähige Sintermaterialien, Verbindungstechnik sowie Leistungselektronik. Die schnelle Entwicklung der Marktbedürfnisse im Blick, haben sie schon zu Projektbeginn die Zielmarke für die Entwicklung eines hochintegrierten PV-Wechselrichters auf eine Nennleistung von 70 kW erweitert. Dabei wurden speziell die mechanischen und elektromechanischen Komponenten analysiert, innovative Lösungsansätze erarbeitet und diese in einem Gesamtkonzept vereint.

Systemaufbau

Am Anfang der Projektarbeit stand eine Kostenanalyse der mechanischen und elektromechanischen Komponenten, deren Kostenanteil bei heutigen Geräten bei bis zu 70 % liegt. Zu den mechanischen Komponenten zählen das Gehäuse, die Kühlungskomponenten und Stützstrukturen. Die elektromechanischen Komponenten umfassen Bauteile wie Steckverbinder, Induktivitäten und Leiterkarten.

»Ein Lösungsansatz zur Kostenreduktion besteht darin, die Technologien der verwendeten Komponenten aus den kleineren Leistungsklassen so zu optimieren, dass daraus Geräte mit größerer Leistung entwickelt werden können« so Sebastian Franz, verantwortlich für das Team »Schaltungsentwicklung und Hardware-Design« in der Abteilung Leistungselektronik und Netztechnologien des Fraunhofer ISE.

Zentrales Element des hochintegrierten Konzepts ist der sogenannte »Heiße Kern«. Dabei können mehrseitig die auftretenden Verluste der Halbleiter über den Kühlkörper abgeführt werden. Durch die Abkopplung des Kühlkörpers vom Gehäuse konnten die Entwickler das maximale Temperaturniveau um 30 % anheben und in Verbindung mit Sintermaterialien den Materialeinsatz maßgeblich reduzieren.

Das Aufbaukonzept beinhaltet unterschiedliche Temperaturzonen, welche sich durch die Art der Kühlung, die maximalen Temperaturen und die IP-Schutzklassen differenzieren. So lassen sich die kühleren Zonen nutzen, um kostengünstige Bauteile mit geringeren Temperaturanforderungen einzusetzen. Auch bei den Leiterkarten ließen sich durch den Einsatz von Standardtechnologien Kosten einsparen.

Der zweistufige leistungselektronische Wandler beinhaltet fünf Hochsetzsteller und eine dreiphasige Dreipunkt-Wechselrichter-Topologie. Durch die gezielte Verwendung von Siliciumkarbid-Halbleitern (SiC) und den damit verbundenen höheren Taktfrequenzen gelang es den Forschern, die passiven Elemente erheblich zu verkleinern, wodurch sich zum einen die Leistungsdichte steigern und gleichzeitig auch hier der Materialeinsatz reduzieren ließ.

Steigerung der Leistungsdichte

Den Projektpartnern ist es gelungen, kostengünstige am Markt verfügbare Technologien aufzugreifen, diese zu modifizieren und optimal kombiniert in einem Gesamtgerätekonzept zu vereinen. Der maximal gemessene Wirkungsgrad des entwickelten Wechselrichters, inkl. Eigenverbrauch, beträgt 98,8 % und der europäische Wirkungsgrad des Gesamtgeräts liegt bei 98,3 %.

Die Reduktion des Volumens konnte im Wesentlichen auch durch den Einsatz von kleineren mechanischen und elektromechanischen Komponenten erreicht werden. Dadurch wurde ein Gesamtgewicht inkl. Gehäuse von 58,5 kg bei einem Bauraum von 110 Litern erreicht. »Mit 1200 W/kg übersteigt die Leistungsdichte deutlich die von am Markt verfügbaren Geräten« so Sebastian Franz.

Das im Jahre 2014 gestartete Projekt »PV-Pack« hatte eine Laufzeit von drei Jahren und wurde vom Bundesministerium für Bildung und Forschung (BMBF) mit rund 1,9 Millionen Euro gefördert. Mit dieser Summe unterstützt das BMBF im Rahmen der Hightech-Strategie der Bundesregierung und auf der Grundlage des Programms IKT2020 Forschungs- und Entwicklungsprojekte zur Leistungselektronik am Standort Deutschland.

Weitere Informationen:

https://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics