Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neu entdeckte Materialeigenschaft verspricht Innovationsschub in der Mikroelektronik

17.10.2019

BMBF fördert CAU und Fraunhofer-Institute in Itzehoe und Freiburg mit 2,3 Millionen Euro für gemeinsames Forschungsprojekt zur Mikroelektronik und Mikrosystemtechnik

Zur Entwicklung permanenter Datenspeicher oder Mikroantriebe, zum Beispiel
für Lautsprecher, forscht die Wissenschaft schon lange an sogenannten ferroelektrischen Materialien. Sie können ihre elektrische Ausrichtung ändern.


Die Kristallstruktur ferroelektrischer Materialien lässt sich durch elektrische Signale ändern. Nach Eintauchen in eine Säure wird der Unterschied im Rasterelektronenmikroskop sichtbar.

© Simon Fichtner


Prof. Bernhard Wagner und Doktorand Simon Fichtner haben bisher unbekannte Eigenschaften in einem Material entdeckt, die zahlreiche Anwendungen in der Mikroelektronik ermöglichen könnten.

Foto: Julia Siekmann, CAU

Für die industrielle Anwendung waren sie allerdings zu wenig leistungsfähig oder zu unzuverlässig. Ganz neue Anwendungsmöglichkeiten könnte ein vielversprechendes ferroelektrisches Material eröffnen, das Materialwissenschaftler Simon Fichtner von der Christian-Albrechts-Universität zu Kiel (CAU) entdeckt hat.

In einem gemeinsamen Projekt mit dem Fraunhofer-Institut für Siliziumtechnologie in Itzehoe (ISIT) und dem Fraunhofer-Institut für angewandte Festkörperphysik in Freiburg (IAF) will er das Verhalten des Materials noch besser verstehen und in die Anwendung bringen.

Es könnte völlig neue Konzepte in der Mikroelektronik und der Mikrosystemtechnik ermöglichen und damit die Leistung von Informationsspeichern und Mikroantrieben deutlich verbessern. Das im Oktober gestartete Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) für vier Jahre mit 2,3 Millionen Euro gefördert.

Materialwissenschaftler beobachtet bisher unentdeckte Eigenschaft

Sie gehören zu den am meisten erforschten Materialien in der Mikroelektronik und Mikrosystemtechnik und sind unter anderem in Tintenstrahldruckern oder in Transistoren zu finden: Sogenannte Ferroelektrika sind permanent elektrisch ausgerichtet, auch ohne äußeres elektrisches Feld. Kommt ein elektrisches Signal von außen hinzu, verändert sich die Kristallstruktur des Materials auf atomarer Ebene – und damit seine elektrische Ausrichtung. Das macht vielfältige technische Anwendungen möglich.

Im Rahmen seiner Doktorarbeit untersuchte Materialwissenschaftler Simon Fichtner Aluminium-Scandium-Nitrid (AIScN), das er im Reinraum des Nanolabors der CAU selbst hergestellt hatte. Dabei machte er eine unerwartete Beobachtung: Durch Anlegen großer elektrischer Felder ließ sich die Kristallstruktur des Materials um 180 Grad drehen. Damit hatte Fichtner einen ersten Hinweis auf Ferroelektrizität gefunden, den er durch weiterführende Experimente bestätigen konnte. In der Wissenschaft war diese Eigenschaft von AIScN bisher nicht bekannt.

Kopfhörer mit besserem Klang und weniger Energieverbrauch

“Wir wollten das Material eigentlich für besonders leistungsfähige Chip-Antriebe nutzen, zum Beispiel für Lautsprecher. Deshalb haben wir getestet, wieviel Spannung es verträgt“, erklärt der Materialwissenschaftler. „Wir hatten erwartet, dass es dabei irgendwann kaputtgeht. Stattdessen änderte es an einem bestimmten Punkt seine elektrische Polarisation ins Negative“, ergänzt sein Doktorvater Bernhard Wagner, Professor für Materialien und Prozesse der Nanosystemtechnik an der CAU und zugleich stellvertretender Leiter des ISIT.

Diese besondere Eigenschaft erhöht das technologische Potential des AIScN-Materials enorm, sind die beiden Wissenschaftler überzeugt. Im Vergleich zu anderen ferroelektrischen Materialien zeichnet sich AlScN außerdem durch eine deutlich verbesserte Stabilität und Leistungsfähigkeit aus. Gleichzeitig ist es technisch besonders gut kompatibel mit zentralen Technologien der Halbleiterindustrie. Mit AIScN hergestellte technische Bauteile könnten zum Beispiel Klang, Energieverbrauch und Lebensdauer von Kopfhörern verbessern oder die Reaktionsgeschwindigkeit und Langlebigkeit von Informationsspeichern erhöhen.

Mit BMBF-Förderung Anwendungspotential erforschen

Ihre überraschende Entdeckung veröffentlichten die Wissenschaftler in diesem Jahr im Fachmagazin „Journal of Applied Physics“. Ihr als „Featured Article“ hervorgehobener Beitrag stieß auf große Resonanz in der Fachwelt. In einem gemeinsamen BMBF-Projekt mit den Fraunhofer-Instituten ISIT und IAF gehen sie jetzt noch einen Schritt weiter: Das ungewöhnliche Verhalten des Materials wollen sie genauer untersuchen und herausfinden, welche neuen technischen Anwendungen es ermöglicht.

Auf dieser Grundlage erforscht das ISIT die Einsatzmöglichkeiten von AIScN für Aktuatoren, während das IAF damit bessere Leistungstransistoren herstellen will. In engem Austausch mit beiden Fraunhofer-Instituten entwickelt die CAU-Forschungsgruppe das Material maßgeschneidert für verschiedene technische Anwendungen weiter. Denkbar ist auch der Einsatz in der Optoelektronik oder der Medizintechnik. Dafür arbeiten Wagner und Fichtner auch mit anderen Arbeitsgruppen aus den Bereichen Nanoelektronik (Professor Hermann Kohlstedt) und Transmissionselektronenmikroskopie (Professor Lorenz Kienle) der CAU zusammen.

„Damit lassen sich bahnbrechend neue Bereiche erschließen“

Wir konnten hier das erste Ferroelektrikum herstellen, das auf einem sogenannten III-V-Halbleiter basiert. Mit diesem Material lassen sich technisch bahnbrechende neue Bereiche erschließen, die mit den etablierten Ferroelektrika bisher nicht zugänglich waren – das könnte einen regelrechten Innovationsschub in der Mikroelektronik und Mikrosystemtechnik auslösen“, beschreibt Wagner das Potential der Entdeckung. Möglich war das vor allem durch die hervorragende Infrastruktur an der Kieler Universität. Mit einer hochspeziellen Sputteranlage des Kompetenzzentrums Nanosystemtechnik der CAU lässt sich die Zusammensetzung von Materialen gezielt ändern. „So konnten wir Materialien mit einem besonders hohen Skandiumgehalt von über 40 Prozent herstellen“, erklärt Fichtner. Die besonderen Organisation des Reinraums des Kompetenzzentrums boten die nötige Flexibilität, um völlig neue Materialien für die Mikrosystemtechnik zu testen.

Mit ihrer Förderlinie "Forschung für neue Mikroelektronik“ unterstützt das BMBF ein besonders forschungsintensives Feld, dessen Anwendungen branchenübergreifend Treiber von Fortschritt, Wettbewerb und Innovation sind.
Die Förderung soll die Brücke schlagen zwischen reiner Grundlagenforschung und industriegeführter Forschung für die nächste Generation der Mikroelektronik.

Originalpublikation:
AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019); Simon Fichtner, Niklas Wolff, Fabian Lofink, Lorenz Kienle and Bernhard Wagner https://doi.org/10.1063/1.5084945

Bildmaterial steht zum Download bereit:
http://www.uni-kiel.de/de/pressemitteilungen/2019/315-ferroelektrik-1.jpg
Bildunterschrift: Materialwissenschaftler Simon Fichtner hat bisher unbekannte Eigenschaften in einem Material entdeckt, die zahlreiche technische Anwendungen in der Mikroelektronik ermöglichen könnte.
© Julia Siekmann, CAU

http://www.uni-kiel.de/de/pressemitteilungen/2019/315-ferroelektrik-2.jpg
Bildunterschrift: Professor Bernhard Wagner und Doktorand Simon Fichtner erforschen sogenannte ferroelektrische Materialien, hier am Doppelstrahl-Laserinterferometer.
© Julia Siekmann, CAU

http://www.uni-kiel.de/de/pressemitteilungen/2019/315-ferroelektrik-3.jpg
Bildunterschrift: Mit einer speziellen Anlage im Reinraum der CAU kann Simon Fichtner die Zusammensetzung von Materialien gezielt ändern.
© Julia Siekmann, CAU

http://www.uni-kiel.de/de/pressemitteilungen/2019/315-ferroelektrik-4.jpg
Bildunterschrift: Die Kristallstruktur ferroelektrischer Materialien lässt sich durch elektrische Signale ändern. Nach Eintauchen in eine Säure wird der Unterschied im Rasterelektronenmikroskop sichtbar. Bereiche mit positiver Polarisation (rechts) wurden durch die Säure fast vollständig entfernt, während Bereiche mit negativer Polarisation (links) außerordentlich stabil sind.
© Simon Fichtner

http://www.uni-kiel.de/de/pressemitteilungen/2019/315-ferroelektrik-5.png
Bildunterschrift: Bei herkömmlichen Ferroelektrika wie Blei-Zirkonat-Titanat (PZT, blaue Linie) ist die Stabilität der Polarisation oftmals gering. Ganz neue Bereiche sind mit dem Material Aluminium-Scandium-Nitrid erreichbar. Wichtige Eigenschaften lassen sich zudem über den Scandiumgehalt gezielt einstellen.
© Simon Fichtner

Kontakt:
Prof. Dr. Bernhard Wagner
Christian-Albrechts-Universität zu Kiel /
Fraunhofer-Institut für Siliziumtechnologie in Itzehoe (ISIT)
Telefon: +49 4821 17-4213
E-Mail: bernhard.wagner@isit.fhg.de
https://www.tf.uni-kiel.de/matwis/mpn/de

M.Sc. Simon Fichtner
Christian-Albrechts-Universität zu Kiel
Arbeitsgruppe „Materialien und Prozesse der Nanosystemtechnik“
Telefon: +49 431 880-6195
E-Mail: sif@tf.uni-kiel.de

Julia Siekmann
Wissenschaftskommunikation
Forschungsschwerpunkt Kiel Nano, Surface and Interface Science (KiNSIS)
Universität Kiel
Telefon: 0431/880-4855
E-Mail: jsiekmann@uv.uni-kiel.de

Weitere Informationen:
Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf http://www.kinsis.uni-kiel.de

Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text/Redaktion: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni

Wissenschaftliche Ansprechpartner:

Prof. Dr. Bernhard Wagner
Christian-Albrechts-Universität zu Kiel /
Fraunhofer-Institut für Siliziumtechnologie in Itzehoe (ISIT)
Telefon: +49 4821 17-4213
E-Mail: bernhard.wagner@isit.fhg.de
https://www.tf.uni-kiel.de/matwis/mpn/de

M.Sc. Simon Fichtner
Christian-Albrechts-Universität zu Kiel
Arbeitsgruppe „Materialien und Prozesse der Nanosystemtechnik“
Telefon: +49 431 880-6195
E-Mail: sif@tf.uni-kiel.de

Originalpublikation:

AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019); Simon Fichtner, Niklas Wolff, Fabian Lofink, Lorenz Kienle and Bernhard Wagner https://doi.org/10.1063/1.5084945

Weitere Informationen:

https://www.uni-kiel.de/de/detailansicht/news/315-ferroelektrik/

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht »KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«
12.11.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Effizienz-Weltrekord für organische Solarmodule aufgestellt
11.11.2019 | Bayerisches Zentrum für Angewandte Energieforschung e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Effiziente Motorenproduktion mit der neuesten Generation des LZH IBK

13.11.2019 | Maschinenbau

KI-gesteuerte Klassifizierung einzelner Blutzellen: Neue Methode unterstützt Ärzte bei der Leukämiediagnostik

13.11.2019 | Biowissenschaften Chemie

Faserverstärkte Verbundstoffe schnell und präzise durchleuchten

13.11.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics