Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magie aus dem Handgelenk

11.07.2017

Dinge bewegen mit dem Wink einer Hand: Was nach Science-Fiction klingt, könnte dank Empa-Technologie bald Wirklichkeit werden. Ein Sensor aus piezoresistiven Fasern, integriert in einem Armband, misst die leichteste Bewegung am Handgelenk und wandelt sie in elektrische Signale um. Damit lassen sich etwa Drohnen steuern oder andere elektronische Geräte ohne Fernbedienung kontrollieren.

Ein Wink nach links, die Drohne schwenkt nach links. Ein Wink nach rechts, die Drohne steuert nach rechts. Mit der Hand eine Faust formen, die Drohne landet sanft auf dem Tisch. Das ist keine Spinnerei, sondern Wirklichkeit.


Im Uhrenarmband stecken piezoresistive Fasern, gedruckt in einem 3-D-Drucker. Die Bewegungen des Arms werden auf die Drohne übertragen

Empa-Forschende um Frank Clemens aus der Abteilung «Hochleistungskeramik» haben einen Sensor aus piezoresistiven Fasern entwickelt und ihn in ein Armband integriert, das, am Handgelenk getragen, feinste Bewegungen der Hand registriert.

Die piezoresistive Faser ist elektrisch leitend, erkennt eine Deformation und wandelt sie in ein elektrisches Signal um, das dann von einem Endgerät ausgelesen und interpretiert werden kann. So lassen sich beispielsweise Roboter mit einem einfachen Fingerzeig bewegen.

Bewegungssensorik ist zwar nicht neu, bislang wurden Bewegungen allerdings hauptsächlich über visuelle Sensoren (Kameras) sowie Accelerometer (Beschleunigungsmesser) und Gyroskope (Rotationsmesser) erfasst. Diese Art, Bewegungen zu registrieren, setzt indes grosse, deutliche Bewegungen in einem bestimmten Geschwindigkeitsbereich voraus, die für den Menschen teilweise unnatürlich sind.

Der neue Empa-Sensor reagiert dagegen bereits auf kleinste Bewegungen, die natürlich von der Hand gehen. Auf bisherige Technologien will Clemens aber keinesfalls verzichten. «Es braucht eine Kombination verschiedener Sensoren, um erfolgreich neue Konzepte zu entwickeln. Nur so können wir Bewegungen erkennen und nutzen, die mit den bisherigen Technologien nicht erfassbar waren.» So ermögliche etwa die Kombination aus Beschleunigungs-, Rotations- und Orientierungssensoren, zusammen mit dem Faser-Sensor, vollkommen neue Kommandos zur Steuerung von technischen Geräten, sei es eine Drohne oder das Garagentor

Ein Algorithmus übersetzt Bewegungen

Die Forschenden haben den Sensor zu Testzwecken in ein herkömmliches Uhrenarmband integriert, denn in Zukunft soll der Sensor unauffällig am Handgelenk getragen werden können, um den Träger möglichst wenig einzuschränken. Auch ganz normale Schmuckarmbänder sind denkbar. Bis zu diesem Schritt war allerdings einige Forschungsarbeit nötig.

In ersten Prototypen war es Frank Clemens und Mark Melnykowycz gelungen, die piezoresistiven Fasern auf einem Textil anzubringen. Um den Sensor allerdings in gewünschtem Mass einzusetzen, war das nicht ausreichend. «Mit Hilfe von Additiver Fertigung haben wir es geschafft, die Sensorstruktur in nicht-textile Materialien zu integrieren», so Clemens. So liess sich der Sensor schliesslich problemlos in bestehende Uhrenarmbänder einsetzen.

In Zusammenarbeit mit den Firmen STBL Medical Research AG und Idezo gelang es Clemens’ Team, den Sensor so zu programmieren, dass sich damit eine Drohne mit nichts weiter als Handbewegungen steuern liess. Zurzeit wird der Algorithmus, der diese Übersetzungsarbeit zwischen Sensorik und Drohnensteuerung übernimmt, im Rahmen einer Bachelorarbeit an der Fachhochschule Bern unter der Leitung von Marx Stampfli weiter verfeinert, um auf noch einfachere Gestik reagieren zu können.

So soll der Sensor beispielsweise nicht nur einzelne Bewegungen, sondern auch ganze Bewegungsfolgen erkennen können. Zum Beispiel, zweimal kurz hintereinander die Faust ballen löst ein anderes Kommando aus als einmal kurz und einmal lang.

Auch das Tragen des Sensors in einem Armband ist vielleicht bereits bald wieder Geschichte. Eine ETH-Studentin untersucht in ihrer Semesterarbeit die Möglichkeit, den piezoresistiven Sensor in ein Pflaster zu integrieren. Es bräuchte dann nicht einmal mehr ein Armband, sondern nur noch ein kaum sichtbares Pflaster am Handgelenk, um diverse Interaktionen mit technischen Geräten und Robotern durchzuführen.

Das Projekt steckt zwar noch in den Kinderschuhen, technisch funktioniert jedoch bereits alles einwandfrei. «Gemeinsam mit unserem Umsetzungspartner STBL Medical Research AG diskutieren wir derzeit mit weiteren Partnern aus diversen Bereichen eine industrielle Umsetzung», so Clemens.

Weitere Informationen:

http://www.empa.ch/web/s604/drohnensteuerung

Cornelia Zogg | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Sprit sparen auf dem Acker
20.11.2019 | Technische Universität Braunschweig

nachricht Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk
19.11.2019 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

Nicht nur in Muskelzellen spielen sie die Hauptrolle: Die Aktinfilamente sind eines der häufigsten Proteine in allen Säugetierzellen. Die fadenförmigen Strukturen bilden einen wichtigen Teil des Zellskeletts und -bewegungsapparats. Zellbiologinnen und -biologen der Universität Freiburg zeigen nun in Zellkulturen, wie Rezeptorproteine in der Membran dieser Zellen Signale von außen an Aktinmoleküle im Kern weiterleiten, die daraufhin Fäden bilden.

Das Team um Pharmakologe Prof. Dr. Robert Grosse steuert in einer Studie den Auf- und Abbau der Aktinfilamente im Zellkern mit physiologischen Botenstoffen und...

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Gewinner ist… Vorankündigung zum 11. Corporate Health Award

22.11.2019 | Förderungen Preise

Erste Liga der Automobilzulieferer

22.11.2019 | Förderungen Preise

Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

22.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics