Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleiner als eine Münze

08.10.2019

ETH-Forschende haben ein kompaktes Infrarot-Spektrometer entwickelt, das sich auf einem kleinen Chip unterbringen lässt. Damit ergeben sich interessante Perspektiven – im Weltall und im Alltag.

Ein Handy kann heute alle möglichen Aufgaben erledigen: Fotos und Videos aufnehmen, Nachrichten versenden, die gegenwärtige Position bestimmen – und natürlich auch Telefongespräche übermitteln. Und vielleicht kann man mit diesen vielseitigen Geräten auch einmal den Alkoholgehalt im Bier oder den Reifegrad von Früchten bestimmen.


Mit diesem ca. 2 cm langen Chip lässt sich das Wellenspektrum von Infrarotlicht präzis aufschlüsseln. (Bild: ETH Zürich / Pascal A. Halder)

Die Idee, Mobiltelefone für chemische Analysen zu nutzen, scheint auf den ersten Blick wagemutig. Denn die heutigen Infrarot-Spektrometer, die für solche Analysen eingesetzt werden, sind in der Regel mehrere Kilogramm schwere Kisten, die sich kaum in ein handliches Gerät integrieren lassen.

Forschenden der ETH Zürich ist nun aber ein wichtiger Schritt gelungen, diese Vision dennoch Realität werden zu lassen: David Pohl und Marc Reig Escalé aus der Gruppe von Rachel Grange, Professorin für optische Nanomaterialien am Departement Physik, haben zusammen mit weiteren Kollegen einen rund zwei Quadratzentimeter grossen Chip entwickelt, mit dem sich Infrarotlicht auf die gleiche Weise analysieren lässt wie mit einem herkömmlichen Spektrometer.

Lichtleiter statt Spiegel

Bei einem herkömmlichen Infrarotspektrometer wird das einfallende Licht in zwei Pfade aufgeteilt und anschliessend an zwei Spiegeln reflektiert. Das zurückgeworfene Licht wird wieder zusammengeführt und mit einem Fotodetektor gemessen. Verschiebt man nun einen der beiden Spiegel, kann man aus dem Interferenzmuster den Anteil der verschiedenen Wellenlängen im Eingangssignal bestimmen.

Da chemische Substanzen charakteristische Lücken im Infrarot-Wellenspektrum erzeugen, lässt sich anhand des gemessenen Spektrums nachweisen, welche Substanzen in der untersuchten Probe in welcher Konzentration vorkommen.

Auf diesem Messprinzip basiert auch das von den ETH-Forschenden entwickelte Mini-Spektrometer. Das einfallende Licht wird allerdings nicht mehr mit Hilfe von beweglichen Spiegeln analysiert, sondern mit speziellen Lichtleitern, deren optischer Brechungsindex sich von aussen über ein elektrisches Feld verändern lässt.

«Das Variieren des Brechungsindexes hat einen ähnlichen Effekt wie das Verschieben der Spiegel», sagt David Pohl. «Deshalb können wir mit dieser Anordnung das Spektrum des einfallenden Lichtes ebenfalls auflösen.»

Anspruchsvolle Strukturierung

Je nach dem, wie der Lichtleiter konfiguriert ist, lassen sich dabei unterschiedliche Bereiche des Lichtspektrums untersuchten. «Mit unserem Spektrometer kann man im Prinzip nicht nur Infrarotlicht, sondern auch sichtbares Licht analysieren, wenn man den Lichtleiter entsprechend konfiguriert», erläutert Marc Reig Escalé.

Im Gegensatz zu anderen integrierten Spektrometern, die nur einen engen Bereich des Lichtspektrums abdecken können, hat das von Granges Gruppe entwickelte Spektrometer den grossen Vorteil, dass es einen breiten Wellenlängenbereich analysieren kann.

Die Entwicklung der ETH-Physiker hat neben der Kompaktheit noch zwei weitere Vorteile: Das Spektrometer auf dem Chip muss nur einmal kalibriert werden, während herkömmliche Geräte immer wieder geeicht werden müssen; und es benötigt weniger Unterhalt, da es keine beweglichen Teile mehr gibt.

Für das Spektrometer verwendeten die ETH-Forschenden ein Material, das auch in der Telekommunikationsbranche als Modulator zum Einsatz kommt. Das von ihrer Gruppe verwendete Material hat zwar viele positive Eigenschaften. Als Lichtleiter hält es das Licht jedoch im Inneren gefangen. Das ist ungünstig, denn eine Messung ist nur möglich, wenn ein Teil des zusammengeführten Lichts nach aussen dringen kann. Die Wissenschaftler haben deshalb auf den Lichtleitern feine Metallstrukturen angebracht, die das Licht nach aussen streuen. «Es brauchte viel Arbeit im Reinraum, bis wir das Material in der gewünschten Form strukturieren konnten», sagt Grange.

Ideal für den Weltraum

Bis das heutige Mini-Spektrometer tatsächlich in ein Handy oder ein anders elektronisches Gerät eingebaut werden kann, braucht es allerdings noch einiges an technischer Weiterentwicklung. «Im Moment messen wir das Signal mit einer externen Kamera», erklärt Grange. «Wenn wir ein kompaktes Gerät haben wollen, müssen wir diese also auch noch integrieren.»

Ursprünglich hatte die Physikerin nicht chemische Analysen, sondern eine ganz andere Anwendung im Visier: In der Astronomie liefern Infrarotspektrometer wichtige Informationen über ferne Himmelsobjekte. Weil die Erdatmosphäre viel Infrarotlicht absorbiert, werden diese Instrumente idealerweise auf Satelliten im Weltraum stationiert. Dabei ist es natürlich ein grosser Vorteil, wenn man ein kompaktes, leichtes und stabiles Messgerät zur Verfügung hat, das sich vergleichsweise kostengünstig ins All befördern lässt.

Wissenschaftliche Ansprechpartner:

Rachel Grange, +41 44 633 37 08, grange@phys.ethz.ch, Institut für Quantenelektronik, ETH Zürich

Originalpublikation:

Pohl D et.al.: An integrated broadband spectrometer on thin-film lithium niobate. Nature Photonics, 8. Oktober 2019. DOI: 10.1038/s41566-019-0529-9

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/10/kleiner-als-ei...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Erneuter Weltrekord für speedCIGS
07.07.2020 | Wilhelm Büchner Hochschule

nachricht Mobile Messgeräte: Im Flug erwischt
07.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing

08.07.2020 | Materialwissenschaften

Graphen: Auf den Belag kommt es an

08.07.2020 | Materialwissenschaften

Enzyme als Doppelagenten: Neuer Mechanismus bei der Proteinmodifikation entdeckt

08.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics