Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleiner als eine Münze

08.10.2019

ETH-Forschende haben ein kompaktes Infrarot-Spektrometer entwickelt, das sich auf einem kleinen Chip unterbringen lässt. Damit ergeben sich interessante Perspektiven – im Weltall und im Alltag.

Ein Handy kann heute alle möglichen Aufgaben erledigen: Fotos und Videos aufnehmen, Nachrichten versenden, die gegenwärtige Position bestimmen – und natürlich auch Telefongespräche übermitteln. Und vielleicht kann man mit diesen vielseitigen Geräten auch einmal den Alkoholgehalt im Bier oder den Reifegrad von Früchten bestimmen.


Mit diesem ca. 2 cm langen Chip lässt sich das Wellenspektrum von Infrarotlicht präzis aufschlüsseln. (Bild: ETH Zürich / Pascal A. Halder)

Die Idee, Mobiltelefone für chemische Analysen zu nutzen, scheint auf den ersten Blick wagemutig. Denn die heutigen Infrarot-Spektrometer, die für solche Analysen eingesetzt werden, sind in der Regel mehrere Kilogramm schwere Kisten, die sich kaum in ein handliches Gerät integrieren lassen.

Forschenden der ETH Zürich ist nun aber ein wichtiger Schritt gelungen, diese Vision dennoch Realität werden zu lassen: David Pohl und Marc Reig Escalé aus der Gruppe von Rachel Grange, Professorin für optische Nanomaterialien am Departement Physik, haben zusammen mit weiteren Kollegen einen rund zwei Quadratzentimeter grossen Chip entwickelt, mit dem sich Infrarotlicht auf die gleiche Weise analysieren lässt wie mit einem herkömmlichen Spektrometer.

Lichtleiter statt Spiegel

Bei einem herkömmlichen Infrarotspektrometer wird das einfallende Licht in zwei Pfade aufgeteilt und anschliessend an zwei Spiegeln reflektiert. Das zurückgeworfene Licht wird wieder zusammengeführt und mit einem Fotodetektor gemessen. Verschiebt man nun einen der beiden Spiegel, kann man aus dem Interferenzmuster den Anteil der verschiedenen Wellenlängen im Eingangssignal bestimmen.

Da chemische Substanzen charakteristische Lücken im Infrarot-Wellenspektrum erzeugen, lässt sich anhand des gemessenen Spektrums nachweisen, welche Substanzen in der untersuchten Probe in welcher Konzentration vorkommen.

Auf diesem Messprinzip basiert auch das von den ETH-Forschenden entwickelte Mini-Spektrometer. Das einfallende Licht wird allerdings nicht mehr mit Hilfe von beweglichen Spiegeln analysiert, sondern mit speziellen Lichtleitern, deren optischer Brechungsindex sich von aussen über ein elektrisches Feld verändern lässt.

«Das Variieren des Brechungsindexes hat einen ähnlichen Effekt wie das Verschieben der Spiegel», sagt David Pohl. «Deshalb können wir mit dieser Anordnung das Spektrum des einfallenden Lichtes ebenfalls auflösen.»

Anspruchsvolle Strukturierung

Je nach dem, wie der Lichtleiter konfiguriert ist, lassen sich dabei unterschiedliche Bereiche des Lichtspektrums untersuchten. «Mit unserem Spektrometer kann man im Prinzip nicht nur Infrarotlicht, sondern auch sichtbares Licht analysieren, wenn man den Lichtleiter entsprechend konfiguriert», erläutert Marc Reig Escalé.

Im Gegensatz zu anderen integrierten Spektrometern, die nur einen engen Bereich des Lichtspektrums abdecken können, hat das von Granges Gruppe entwickelte Spektrometer den grossen Vorteil, dass es einen breiten Wellenlängenbereich analysieren kann.

Die Entwicklung der ETH-Physiker hat neben der Kompaktheit noch zwei weitere Vorteile: Das Spektrometer auf dem Chip muss nur einmal kalibriert werden, während herkömmliche Geräte immer wieder geeicht werden müssen; und es benötigt weniger Unterhalt, da es keine beweglichen Teile mehr gibt.

Für das Spektrometer verwendeten die ETH-Forschenden ein Material, das auch in der Telekommunikationsbranche als Modulator zum Einsatz kommt. Das von ihrer Gruppe verwendete Material hat zwar viele positive Eigenschaften. Als Lichtleiter hält es das Licht jedoch im Inneren gefangen. Das ist ungünstig, denn eine Messung ist nur möglich, wenn ein Teil des zusammengeführten Lichts nach aussen dringen kann. Die Wissenschaftler haben deshalb auf den Lichtleitern feine Metallstrukturen angebracht, die das Licht nach aussen streuen. «Es brauchte viel Arbeit im Reinraum, bis wir das Material in der gewünschten Form strukturieren konnten», sagt Grange.

Ideal für den Weltraum

Bis das heutige Mini-Spektrometer tatsächlich in ein Handy oder ein anders elektronisches Gerät eingebaut werden kann, braucht es allerdings noch einiges an technischer Weiterentwicklung. «Im Moment messen wir das Signal mit einer externen Kamera», erklärt Grange. «Wenn wir ein kompaktes Gerät haben wollen, müssen wir diese also auch noch integrieren.»

Ursprünglich hatte die Physikerin nicht chemische Analysen, sondern eine ganz andere Anwendung im Visier: In der Astronomie liefern Infrarotspektrometer wichtige Informationen über ferne Himmelsobjekte. Weil die Erdatmosphäre viel Infrarotlicht absorbiert, werden diese Instrumente idealerweise auf Satelliten im Weltraum stationiert. Dabei ist es natürlich ein grosser Vorteil, wenn man ein kompaktes, leichtes und stabiles Messgerät zur Verfügung hat, das sich vergleichsweise kostengünstig ins All befördern lässt.

Wissenschaftliche Ansprechpartner:

Rachel Grange, +41 44 633 37 08, grange@phys.ethz.ch, Institut für Quantenelektronik, ETH Zürich

Originalpublikation:

Pohl D et.al.: An integrated broadband spectrometer on thin-film lithium niobate. Nature Photonics, 8. Oktober 2019. DOI: 10.1038/s41566-019-0529-9

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/10/kleiner-als-ei...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wenn Ionen an ihrem Käfig rütteln
06.04.2020 | Max-Planck-Institut für Polymerforschung

nachricht Zuwachs bei stationären Batteriespeichern
06.04.2020 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics