Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IPP-Teststand ELISE erreicht erstes ITER-Ziel

04.07.2018

Neutralteilchenheizung für ITER / Strahl schneller Wasserstoff-Teilchen für die Plasmaheizung

Der Heizstrahl im Teststand ELISE des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching bei München hat die ITER-Werte erreicht: Erzeugt wurde für 1000 Sekunden ein Teilchenstrahl aus negativ geladenen Wasserstoff-Ionen in der für ITER gewünschten Stromstärke von 23 Ampere.


Eines der Beschleunigungsgitter, die in der Ionenquelle ELISE die Wasserstoff-Ionen auf Geschwindigkeit bringen. Durch 640 kleine Löcher wird der Teilchenstrahl in Einzelstrahlen herausgezogen..

(Abbildung: IPP)


Infrarot-Foto des Kalorimeters, das die Leistungsdichte des erzeugten Teilchenstrahls misst. Der aufprallende Strahl zeigt den gewünschten homogenen Quer

(Abbildung: IPP)

Mit ELISE wird eine der Heizmethoden vorbereitet, die das Plasma des internationalen Fusionstestreaktors ITER auf viele Millionen Grad bringen sollen. Kernstück ist eine im IPP entwickelte neuartige Hochfrequenz-Ionenquelle, die den energiereichen Teilchenstrahl erzeugt.

Der internationale Testreaktor ITER (lat.: der Weg), der zurzeit in weltweiter Zusammenarbeit in Frankreich aufgebaut wird, soll zeigen, dass ein Energie lieferndes Fusionsfeuer möglich ist. Ähnlich wie die Sonne soll ein künftiges Fusionskraftwerk aus der Verschmelzung von Atomkernen Energie gewinnen.

Der Brennstoff – ein Wasserstoffplasma – muss dazu berührungsfrei in einem Magnetfeldkäfig eingeschlossen und auf Zündtemperaturen über 100 Millionen Grad aufgeheizt werden. 500 Megawatt Fusionsleistung soll ITER erzeugen – zehnmal mehr, als zuvor zur Heizung des Plasmas aufgewendet wurde.

Diese Plasmaheizung wird etwa zur Hälfte die „Neutralteilchen-Heizung“ übernehmen: Schnelle Wasserstoffatome, die durch den Magnetfeldkäfig hindurch in das Plasma hineingeschossen werden, geben über Stöße ihre Energie an die Plasmateilchen ab.

Dazu erzeugt eine Ionenquelle aus Wasserstoff-Gas geladene Wasserstoff-Ionen, die durch hohe Spannung beschleunigt und anschließend wieder neutralisiert werden, um – als schnelle Wasserstoff-Atome – ungehindert durch den Magnetfeldkäfig in das Plasma eindringen zu können.

Auf diese Weise bringen heutige Heizungen, zum Beispiel an der IPP-Fusionsanlage ASDEX Upgrade in Garching, das Plasma per Knopfdruck auf ein Mehrfaches der Sonnentemperatur. Die Großanlage ITER stellt jedoch erhöhte Anforderungen: So müssen die Teilchenstrahlen viel dicker und die einzelnen Teilchen viel schneller sein als bisher, damit sie tief genug in das voluminöse ITER-Plasma eindringen können:

Zwei Teilchenstrahlen mit etwa türgroßem Querschnitt sollen 16,5 Megawatt Heizleistung in das ITER-Plasma einspeisen. Die in heutigen Fusionsanlagen genutzten Teilchenstrahlen, die mit etwa tellergroßem Querschnitt und wesentlich kleinerer Geschwindigkeit auskommen, wird ITER damit weit hinter sich lassen.

Anstelle der bisher zur Beschleunigung genutzten elektrisch positiv geladenen Ionen – die sich bei hohen Energien nicht mehr effektiv neutralisieren lassen – müssen für ITER daher negativ geladene Ionen verwendet werden, die extrem fragil sind. Eine dazu im IPP entwickelte Hochfrequenz-Ionenquelle wurde als Prototyp in den ITER-Entwurf aufgenommen. Auch der Auftrag zur Weiterentwicklung und Anpassung an die ITER-Anforderungen ging Ende 2012 an das IPP.

An dem Teststand ELISE (Extraction from a Large Ion Source Experiment) wird eine Quelle untersucht, die halb so groß ist wie eine spätere ITER-Quelle. Sie erzeugt einen Ionenstrahl von rund einem Quadratmeter Querschnittsfläche. Mit dem gewachsenen Format mussten die bisherigen technischen Lösungen für das Heizverfahren überarbeitet werden (siehe PI 2/2015). Schritt für Schritt ist ELISE in neue Größenordnungen vorgedrungen.

„Den von ITER gewünschten, rund 23 Ampere starken Teilchenstrahl aus negativ geladenen Wasserstoff-Ionen konnten wir nun erzeugen, stabil, homogen und 1000 Sekunden andauernd“, sagt Professor Dr. Ursel Fantz, Leiterin des Bereichs ITER-Technologie und -Diagnostik im IPP: „Auch der Gasdruck in der Quelle und die Menge der zurückgehaltenen Elektronen entsprachen den ITER-Vorgaben“. Nur die von ITER verlangte Stromdichte des Ionenstrahls wurde nicht ganz erreicht, was an der begrenzten Leistungsfähigkeit der zur Verfügung stehenden Hochspannungsversorgung liegt.

Wie geht es weiter?

Nachdem ELISE die von ITER geforderte Stromstärke mit normalem Wasserstoff jetzt erreicht hat, will man nun Teil zwei der Aufgabe in Angriff nehmen und Ionen-Strahlen aus der schweren Wasserstoff-Variante Deuterium erzeugen – dies allerdings nicht für 1000 Sekunden, sondern für eine Stunde. Das System in Originalgröße wird das italienische Fusionsinstitut der ENEA in Padua untersuchen und dabei mit dem IPP zusammenarbeiten. Die Testanlage SPIDER (Source for Production of Ion of Deuterium Extracted from Radio Frequency Plasma) ging Anfang Juni in Padua in Betrieb. Ihre Zieldaten: einstündige Pulse mit vollem ITER-Strahlquerschnitt und 6 Megawatt Leistung in Wasserstoff und Deuterium.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2018/05_18

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ungesundes Sitzen vermeiden: Stuhl erkennt Sitzposition und motiviert zur Änderung der Körperhaltung
10.12.2018 | Technische Hochschule Köln

nachricht Ganz ohne Zauberstab: Bayreuther Forscher steuern mit Schallwellen schwebende Objekte
04.12.2018 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics