Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gelungener Technologietransfer: UV-Photodioden schließen Lücke in internationalen Märkten

01.04.2011
UV-Photodioden auf der Basis von Siliziumcarbid (SiC) sind zentrale Komponenten in einer Vielzahl von Anwendungen, von der Prozessüberwachung bis zu biomedi-zinischen Analysen. Durch die enge Zusammenarbeit von Forschung und Industrie ist es gelungen, eine wichtige Lücke in der Versorgung mit diesen Chips zu schließen. Die nun verfügbaren SiC-UV-Photodioden gehören zu den weltweit leistungsfähigsten.

SiC-basierte Photodetektoren liefern vor Ort wichtige qualitative und quantitative Informationen über die eingesetzte UV-Strahlung. Sie werden unter anderem bei der Überwachung und Steuerung von Anlagen zur UV-Desinfektion eingesetzt, um etwa Luft oder Wasser zu entkeimen, zur UV-Flammenüberwachung sowie zur Härtung von Lacken und Klebstoffen.


UV-SiC-Photodiode
Foto: FBH/schurian.com

Die im Rahmen einer Kooperation des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) und des Leibniz-Instituts für Kristallzüchtung (IKZ) mit dem Berliner Unternehmen sglux Sol Gel Technologies GmbH entwickelten SiC-UV-Photodioden gehören zu den leistungsfähigsten derzeit erhältlichen Halbleiter-Detektoren im UV-Bereich von 200 nm bis 380 nm. Sie zeichnen sich insbesondere durch ihre hohe „visible blindness“ von >1010 aus – damit sind sie unempfindlich für sichtbare Strahlung. Mit ihrem sehr niedrigen Dunkelstrom von
Dunkelstrom fließt auch bei Abwesenheit von UV-Strahlung und ist deshalb bei geringer Bestrahlung störend. Die Dioden zeigen darüber hinaus eine große Strahlungsfestigkeit, das heißt sie bleiben auch bei langer Bestrahlung stabil. Zudem schließen sie eine wichtige Lücke, die entstanden war, als der weltweit einzige kommerzielle Hersteller derartiger Photodioden seine Produktion einstellte. Damit stand international kein gleichwertiger Ersatz zur Verfügung.

Im Rahmen des Berliner Förderprogrammes Transfer BONUS wurde nun der Herstellungsprozess der UV-SiC-Photodioden erfolgreich von 2- auf 3-Zoll-Wafer übertragen. Dies wurde notwendig, weil 2-Zoll-Wafer nicht mehr kommerziell verfügbar sind und ermöglicht gleichzeitig, höhere Stückzahlen kosteneffizient zu produzieren. Durch die bereits heute sehr große Nachfrage erwartet sglux für das laufende Jahr signifikante Umsatzsteigerungen und wachsende Mitarbeiterzahlen. Diese Entwicklung ist zugleich ein Beispiel für erfolgreichen Technologietransfer.
Die Technologie im Detail
Eine Photodiode ist ein Halbleiter-Bauelement, welches Licht – hier im ultravioletten Spektralbereich – durch den inneren Photoeffekt in elektrische Spannung oder elektrischen Strom umwandelt. Dieser Effekt basiert auf einem durch Kristallwachstum (Epitaxie) erzeugten p-n-Übergang. Ein solcher Materialübergang entsteht in Halbleiterkristallen zwischen Bereichen mit verschiedener Dotierung. Bei der Dotierung werden unterschiedliche Fremdatome in das Halbleitermaterial eingebracht, die die Leitfähigkeit des Ausgangsmaterials gezielt verändern. Die spektrale Empfindlichkeit einer Photodiode hängt von der elektronischen Struktur des verwendeten Halbleitermaterials ab. Für einen Einsatz im Bereich von 200 nm bis 380 nm ist einkristallines SiC besonders gut geeignet.

Die Entwicklung der SiC-Photodioden wurde vom Bundesministeriums für Wirtschaft und Technologie (Zentrales Innovationsprogramm Mittelstand ZIM, KF2194601DB9) gefördert. Dazu wurden Epitaxieschichten am IKZ auf n-dotierten SiC-Substraten gewachsen. Die Schichtdicken lagen zwischen 0,15 µm und 5 µm und wurden mit einer homogenen, schichtspezifischen p- und n-Dotierung zunächst auf 2-Zoll-Wafern abgeschieden. Dieser Epitaxieprozess wurde im nun abgeschlossenen Folgeprojekt auf 3-Zoll-Wafer übertragen. Anschließend wurden die 2- bzw. 3-Zoll-Wafer am FBH prozessiert und durch sglux aufgebaut. Die besonderen Herausforderungen am FBH bestanden in der Entwicklung von Strukturierungsverfahren und der elektrischen Kontaktierung von p- und n-dotierten SiC-Schichten. Es wurden Ätzrezepte sowohl für flache Ätzungen (zur Entfernung der p+-Deckschicht) wie auch für tiefe Ätzungen (zur elektrischen Isolation der Bauelemente) entwickelt.

Kontakt:
Petra Immerz, M.A.
Referentin Kommunikation & Public Relations
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. 030.6392-2626
E-Mail petra.immerz@fbh-berlin.de
Hintergrundinformationen – das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der welt¬weit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikro¬wellen¬technik und Opto¬elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Inno¬vationen in den gesell-schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Laser¬systeme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwen¬dungsfelder reichen von der Medizin-technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten¬kommu¬nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunk¬systeme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikro¬¬wellen¬plasmaquellen mit Nieder-spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen¬arbeit des FBH mit Industriepartnern und Forschungs-einrichtungen garantiert die schnelle Umsetzung der Ergeb¬nisse in praktische Anwendungen. Das Institut beschäftigt 220 Mitarbeiter und hat einen Etat von 21 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

www.fbh-berlin.de

Hintergrundinformationen – das IKZ
Das Leibniz-Institut für Kristallzüchtung (IKZ) des Forschungsverbundes Berlin e.V. arbeitet an den wissenschaftlich-technischen Grundlagen der Kristallzüchtung von Materialien, u.a. für die Mikro-, Opto- und Leistungselektronik, Photovoltaik, Optik, Lasertechnik und Sensorik. Für Partner aus Forschung und Industrie werden Kristalle und Verfahren entwickelt und bereitgestellt.
Hintergrundinformationen – sglux
Die sglux SolGel Technologies GmbH, Berlin, entwickelt, produziert und vertreibt optische und elektronische Produkte zur Messung, Steuerung und Kontrolle von UV-Strahlung. Sie wurde 2003 gegründet und beschäftigt 5 Mitarbeiter. Die Mehrzahl der vom Unternehmen hergestellten Instrumente und Anlagen basieren auf SiC-Photodioden.

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektromobilität: Autos mit Künstlicher Intelligenz optimal laden
04.06.2020 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Alarm bei giftigen Gasen: Sensorsystem soll Arbeitsschutz in der Kunststoffindustrie verbessern
04.06.2020 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sehvermögen durch Gentherapie wiederherstellen

Neuer Ansatz zur Behandlung bislang unheilbarer Netzhautdegeneration

Menschen verlassen sich in erster Linie auf ihr Augenlicht. Der Verlust des Sehvermögens bedeutet, dass wir nicht mehr lesen, Gesichter erkennen oder...

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Kleines Protein, große Wirkung

In Meningokokken spielt das unscheinbare Protein ProQ eine tragende Rolle. Zusammen mit RNA-Molekülen reguliert es Prozesse, die für die krankmachenden Eigenschaften der Bakterien von Bedeutung sind.

Meningokokken sind Bakterien, die lebensbedrohliche Hirnhautentzündungen und Sepsis auslösen können. Diese Krankheitserreger besitzen ein sehr kleines Protein,...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schutz der neuronalen Architektur

05.06.2020 | Biowissenschaften Chemie

Wie das Gehirn unser Sprechen kontrolliert - Beide Gehirnhälften leisten besonderen Beitrag zur Sprachkontrolle

05.06.2020 | Interdisziplinäre Forschung

Akute myeloische Leukämie: Größerer Entscheidungsspielraum bei Therapie-Start

05.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics