Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energiesparender Spin-Strom über magnetisches Feld und Temperatur steuerbar

17.08.2018

SCMR-Effekt vereinfacht Design grundlegender spintronischer Komponenten

Der Schritt von der Glühbirne hin zur LED hat den Stromverbrauch durch Beleuchtung drastisch nach unten geschraubt. Schließlich verpuffte bei der Glühlampe ein Großteil des Stroms als Wärme. Ein ähnlicher Schritt könnte künftig bei elektronischen Komponenten in Computern anstehen. Bislang werden diese mit elektrischem Strom betrieben, wobei unerwünschte Wärme entsteht.


Würde man stattdessen Spin-Strom nutzen, könnte man Computer und Co. deutlich energiesparender betreiben. Dr. Olena Gomonay von der Johannes Gutenberg-Universität Mainz (JGU) und ihr Team haben nun gemeinsam mit Prof. Eiji Saitoh vom Advanced Institute for Materials Research (AIMR) der Tohoku University in Japan und seiner Arbeitsgruppe einen Effekt entdeckt, der einen solchen Wechsel auf Spin-Strom ermöglichen könnte. Dieser Effekt vereinfacht das Design von grundlegenden spintronischen Komponenten deutlich.

Fasst man an einen Computer, der bereits einige Zeit läuft, so spürt man sie: Wärme. Diese entsteht als – unerwünschter – Nebeneffekt durch den elektrischen Strom. Unerwünscht daher, weil die Erzeugung der Wärme natürlich ebenfalls Energie verbraucht.

Man kennt diesen Effekt noch von der Glühbirne: Sie wurde im Laufe von Stunden so heiß, dass man sich daran die Finger verbrennen konnte. Denn die Glühbirne wandelte nur einen Bruchteil der benötigten Energie in das erwünschte Licht um. Anders ist es bei LEDs, bei denen nahezu die gesamte Energie ins Leuchten geht, weshalb sie auch nicht heiß werden. LEDs sind somit deutlich energiesparender als die althergebrachte Glühlampe.

Würde man beim Computer statt des elektrischen Stroms, der auf geladenen Teilchen beruht, einen Strom von Teilchen nutzen, die einen Spin ungleich null haben, kann man das Material auf die gleiche Weise manipulieren und damit die Rechenleistung erzeugen. Der große Unterschied: Es entsteht keine Wärme, die Prozesse wären deutlich energiesparender.

Dr. Olena Gomonay von der JGU hat nun gemeinsam mit Prof. Eiji Saitoh von der Tohoku University die Basis dafür gelegt, solche Spin-Ströme einsetzen zu können. Genauer gesagt: Sie haben die Idee der Spin-Ströme genutzt und auf ein bestimmtes Material angewendet. Gomonay vergleicht die Spin-Ströme dabei mit der Arbeitsweise unseres Gehirns: „Im menschlichen Gehirn verarbeiten wir unzählige Informationen – erhitzen tut es sich dabei nicht. Die Natur ist uns also weit voraus.“ Diesem Vorbild eifert das Mainzer Team nach.

Drastische Änderung des Stromflusses

Wie gut Spin-Ströme fließen, hängt vom Material ab – ebenso wie beim elektrischen Strom. Während Spin-Ströme in ferromagnetischen Materialien jederzeit fließen können, wechseln sich in antiferromagnetischen Materialien Zustände mit niedrigem Widerstand mit solchen mit hohem Widerstand ab. „Wir haben nun eine Möglichkeit gefunden, die Spin-Ströme über ein magnetisches Feld und die Temperatur zu steuern – also den Widerstand eines antiferromagnetischen Systems hinsichtlich des Spins zu kontrollieren“, fasst Dr. Olena Gomonay ihre Ergebnisse zusammen.

Bei einer Temperatur, die nah an der Phasenumwandlungstemperatur liegt, applizierten Gomonay und ihr Team ein kleines magnetisches Feld auf das Material. Während das angelegte Magnetfeld die Orientierung der Spins so ändert, dass sie leicht durch das Material transportiert werden können, hat die Temperatur gleich zwei Effekte. Zum einen bewirkt eine höhere Temperatur, dass sich mehr Teilchen des Materials in angeregten Zuständen befinden, es gibt also mehr Spin-Träger, die transportiert werden können – der Spin-Transport wird einfacher. Zum anderen sorgt die hohe Temperatur dafür, dass man mit einem geringen Magnetfeld auskommt.

Das Ergebnis: Der Widerstand – und damit der Stromfluss – ändert sich drastisch, um mehrere Größenordnungen. „Dieser Effekt, den wir 'spin colossal magnetoresistance' oder kurz SCMR nennen, hat das Potenzial, das Design von grundlegenden spintronischen Komponenten deutlich zu vereinfachen“, so die Mainzer Wissenschaftlerin. Interessant ist das unter anderem für Speichermaterialien, also beispielsweise für Festplatten. Mithilfe dieses Effekts lassen sich beispielsweise Spin-Strom-Schalter realisieren ebenso wie Spin-Strom basierte Speichermedien.

Wissenschaftliche Ansprechpartner:

Dr. Olena Gomonay
INSPIRE – Interdisciplinary Spintronics Research
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel.: +49 6131 39-23643
E-Mail: ogomonay@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/team/olena-gomonay/

Elena Hilp
INSPIRE – Interdisciplinary Spintronics Research
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel.: +49 6131 39-21259
E-Mail: spice@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/

Originalpublikation:

Z. Qiu et al., Spin colossal magnetoresistance in an antiferromagnetic insulator, Nature Materials 17, 577-580, 28. Mai 2018,
DOI:10.1038/s41563-018-0087-4
https://www.nature.com/articles/s41563-018-0087-4

Weitere Informationen:

https://www.sinova-group.physik.uni-mainz.de/ – Interdisciplinary Spintronics Research Group (INSPIRE) an der JGU ;
https://www.spice.uni-mainz.de/ – Spin Phenomena Interdisciplinary Center (SPICE) an der JGU;
https://www.iph.uni-mainz.de/ – Institut für Physik an der JGU

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Eine OLED-Pilotlinie stellt sich vor: Von PI-SCALE zu LYTEUS
12.09.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Einzelne Ionen in Festkörper platziert
12.09.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Womit werden wir morgen kühlen?

Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Technomer 2019 - Kunststofftechniker treffen sich in Chemnitz

16.09.2019 | Veranstaltungen

„Highlights der Physik“ eröffnet

16.09.2019 | Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Probenhalter für die Proteinkristallographie

16.09.2019 | Biowissenschaften Chemie

Warum die Erdatmosphäre viel Sauerstoff enthält

16.09.2019 | Geowissenschaften

Wissenschaftler erforschen Produktentstehungsprozesse in neuem Innovationslabor

16.09.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics