Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Lichtpuls flüchtet vor dem anderen und ändert dabei seine Farbe

16.04.2018

Wissenschaftler der Technischen Universität Hamburg (TUHH), der ITMO-Universität in St. Petersburg, der Menoufia Universität, der Universität York, der Universität St. Andrews, des Tyndall-Instituts in Cork, der Sun Yat-sen Universität in Guangzhou und des Helmholtz-Zentrums Geesthacht haben in eigens hierfür entwickelten und hergestellten nanophotonischen Siliziumchips einen neuartigen Effekt realisiert.

In einem speziellen photonischen Kristallwellenleiter verfolgt hierbei ein nur sechs Billionstel Sekunden dauernder und sich schnell aus-breitender Lichtpuls (Pumpe) einen zunächst langsameren zweiten Lichtpuls (Signal). Der Signalpuls wird durch die Wechselwirkung mit dem Pumppuls beschleunigt, ändert seine Frequenz bzw. Farbe und eilt schließlich in Vorwärtsrichtung davon.


Abbildung 1: Links (a): Schematische Darstel­lung des indirekten photonischen Bandüber­gangs mittels Banddiagramm. Dispersionsfunktion des ursprüng­lichen photonischen Kristallwellenleiters vor der Wand (durchgezogene Linie) und des geschalteten Wellenleiters hinter der Wand (gestrichelte Linie). Rechts (b): Schema des photonischen Kri­stall-Wellenleiters (Silizium: grau, Löcher: weiß). Das Signal, zunächst mit niedriger Frequenz (rot), bleibt im ursprünglichen Wellenleiter, kann nach der Wechselwirkung nur auf dersel­ben Disper­sionsfunktion landen, ändert dabei seine Frequenz und wird beschleunigt (blau). Der heraneilende Pumppuls erzeugt langlebige freie Ladungs­träger­, die hinter der Front verbleiben (orange). Alle Signale haben Wellenlängen im nahen Infrarot in der Nähe von 1550 nm. Grafik: TUHH

Der realisierte Effekt weist eine Analogie zu dem von theoretischen Physikern beschriebenen „Ereignishorizont“ in der Umgebung kosmischer schwarzer Löcher auf, also dem „Punkt ohne Wiederkehr“ für Lichtteilchen, die diese Wand von innen nach außen nicht durchqueren können und schließlich unweigerlich vom schwarzen Loch aufgesogen werden. Derartige Wände für Licht und Änderungen in der Geschwindigkeit und Farbe von Licht in der von den Wissenschaftlern nun beschriebenen Weise sind aus dem Alltagsleben völlig unbekannt und nur unter ganz besonderen Bedingungen beobachtbar.

Wie funktioniert das?

Der Pumppuls setzt Elektronen im Silizium frei und bildet dadurch eine sich schnell bewegende Wand, wobei die langlebigen Ladungsträger hinter der Front verbleiben (Abbildung 1 rechts). Die Bedingungen wurden durch das spezielle Design des photonischen Kristallwellenleiters so gewählt, dass der Signalpuls nicht in den Bereich hinter der Wand eindringen kann und stattdessen in Vorwärtsrichtung vor der heraneilenden Wand flüchtet.

Da sowohl Frequenz als auch Wellenzahl des Signals hierbei verändert werden – was sehr ungewöhnlich ist-, handelt es sich um einen „indirekten“ photonischen Bandübergang (Abbildung 1 links), der nun sowohl theoretisch beschrieben, modelliert und im Experiment realisiert wurde.

Die unter Führung der Hamburger Wissenschaftler gewonnenen neuen Erkenntnisse der Grundlagenforschung sind darüber hinaus von großer Bedeutung für Anwendungen in der ultra-schnellen optischen Nachrichtentech-nik. Aufgrund des besonderen Designs können mit vergleichsweise niedrigen Pumpleistungen sehr große Effekte erzielt werden, wodurch das neuartige Verfahren für die „On-Chip“-Frequenzkonversion und für das rein opti-sche Schalten eingesetzt werden kann.

Die Arbeit wurde am 13.04.2018 in Nature Communications, einer der international am höchsten angesehenen Fachzeitschriften, publiziert.
Publikation:
Online: https://www.nature.com/articles/s41467-018-03862-0

Reflection from a free carrier front via an intraband indirect photonic transition, Mahmoud A. Gaafar, Dirk Jalas, Liam O’Faolain, Juntao Li, Thomas F. Krauss, Alexander Yu. Petrov, and Manfred Eich,
Nature Communications 9, 1447 (2018), doi 10.1038/s41467-018-03862-0

Weitere Informationen:
Prof. Dr. Manfred Eich
Technische Universität Hamburg-Harburg (TUHH), Institut für Optische und Elektronische Materialien,
Eißendorfer Straße 38, D-21073 Hamburg
und
Institut für Werkstoffforschung, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany,
Tel +49 40 42878 3147
E-Mail: m.eich@tuhh.de,
Website: www.tuhh.de/alt/oem/home.html 

Jasmine Ait-Djoudi | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tuhh.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein Roboter als Mitbewohner
16.01.2019 | Universität Siegen

nachricht Präziser Blick ins Innerste von Transistoren hilft Energie sparen
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Roter Riesenvollmond in den Morgenstunden des 21. Januar

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg - Frühaufsteher sind diesmal im Vorteil: Wer am Morgen des 21. Januar 2019 vor 6:45 Uhr einen Blick an den Himmel wirft, kann eine totale Mondfinsternis bestaunen. Dann leuchtet der sonst so strahlende Vollmond zwischen den Sternbildern Zwillingen und Krebs glutrot.

Um das Finsternis-Spektakel in seiner gesamten Länge zu verfolgen, muss man allerdings sehr früh aus dem Bett: Kurz nach 4:30 Uhr beginnt der Mond sich langsam...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

Unsere digitale Gesellschaft im Jahr 2040

16.01.2019 | Veranstaltungen

Superbeschleuniger im Fokus

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

So schnell erwärmen sich die Dauerfrostböden der Welt

16.01.2019 | Geowissenschaften

Wirken Strahlen besser mit Gold?

16.01.2019 | Förderungen Preise

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics