Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Lichtpuls flüchtet vor dem anderen und ändert dabei seine Farbe

16.04.2018

Wissenschaftler der Technischen Universität Hamburg (TUHH), der ITMO-Universität in St. Petersburg, der Menoufia Universität, der Universität York, der Universität St. Andrews, des Tyndall-Instituts in Cork, der Sun Yat-sen Universität in Guangzhou und des Helmholtz-Zentrums Geesthacht haben in eigens hierfür entwickelten und hergestellten nanophotonischen Siliziumchips einen neuartigen Effekt realisiert.

In einem speziellen photonischen Kristallwellenleiter verfolgt hierbei ein nur sechs Billionstel Sekunden dauernder und sich schnell aus-breitender Lichtpuls (Pumpe) einen zunächst langsameren zweiten Lichtpuls (Signal). Der Signalpuls wird durch die Wechselwirkung mit dem Pumppuls beschleunigt, ändert seine Frequenz bzw. Farbe und eilt schließlich in Vorwärtsrichtung davon.


Abbildung 1: Links (a): Schematische Darstel­lung des indirekten photonischen Bandüber­gangs mittels Banddiagramm. Dispersionsfunktion des ursprüng­lichen photonischen Kristallwellenleiters vor der Wand (durchgezogene Linie) und des geschalteten Wellenleiters hinter der Wand (gestrichelte Linie). Rechts (b): Schema des photonischen Kri­stall-Wellenleiters (Silizium: grau, Löcher: weiß). Das Signal, zunächst mit niedriger Frequenz (rot), bleibt im ursprünglichen Wellenleiter, kann nach der Wechselwirkung nur auf dersel­ben Disper­sionsfunktion landen, ändert dabei seine Frequenz und wird beschleunigt (blau). Der heraneilende Pumppuls erzeugt langlebige freie Ladungs­träger­, die hinter der Front verbleiben (orange). Alle Signale haben Wellenlängen im nahen Infrarot in der Nähe von 1550 nm. Grafik: TUHH

Der realisierte Effekt weist eine Analogie zu dem von theoretischen Physikern beschriebenen „Ereignishorizont“ in der Umgebung kosmischer schwarzer Löcher auf, also dem „Punkt ohne Wiederkehr“ für Lichtteilchen, die diese Wand von innen nach außen nicht durchqueren können und schließlich unweigerlich vom schwarzen Loch aufgesogen werden. Derartige Wände für Licht und Änderungen in der Geschwindigkeit und Farbe von Licht in der von den Wissenschaftlern nun beschriebenen Weise sind aus dem Alltagsleben völlig unbekannt und nur unter ganz besonderen Bedingungen beobachtbar.

Wie funktioniert das?

Der Pumppuls setzt Elektronen im Silizium frei und bildet dadurch eine sich schnell bewegende Wand, wobei die langlebigen Ladungsträger hinter der Front verbleiben (Abbildung 1 rechts). Die Bedingungen wurden durch das spezielle Design des photonischen Kristallwellenleiters so gewählt, dass der Signalpuls nicht in den Bereich hinter der Wand eindringen kann und stattdessen in Vorwärtsrichtung vor der heraneilenden Wand flüchtet.

Da sowohl Frequenz als auch Wellenzahl des Signals hierbei verändert werden – was sehr ungewöhnlich ist-, handelt es sich um einen „indirekten“ photonischen Bandübergang (Abbildung 1 links), der nun sowohl theoretisch beschrieben, modelliert und im Experiment realisiert wurde.

Die unter Führung der Hamburger Wissenschaftler gewonnenen neuen Erkenntnisse der Grundlagenforschung sind darüber hinaus von großer Bedeutung für Anwendungen in der ultra-schnellen optischen Nachrichtentech-nik. Aufgrund des besonderen Designs können mit vergleichsweise niedrigen Pumpleistungen sehr große Effekte erzielt werden, wodurch das neuartige Verfahren für die „On-Chip“-Frequenzkonversion und für das rein opti-sche Schalten eingesetzt werden kann.

Die Arbeit wurde am 13.04.2018 in Nature Communications, einer der international am höchsten angesehenen Fachzeitschriften, publiziert.
Publikation:
Online: https://www.nature.com/articles/s41467-018-03862-0

Reflection from a free carrier front via an intraband indirect photonic transition, Mahmoud A. Gaafar, Dirk Jalas, Liam O’Faolain, Juntao Li, Thomas F. Krauss, Alexander Yu. Petrov, and Manfred Eich,
Nature Communications 9, 1447 (2018), doi 10.1038/s41467-018-03862-0

Weitere Informationen:
Prof. Dr. Manfred Eich
Technische Universität Hamburg-Harburg (TUHH), Institut für Optische und Elektronische Materialien,
Eißendorfer Straße 38, D-21073 Hamburg
und
Institut für Werkstoffforschung, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany,
Tel +49 40 42878 3147
E-Mail: m.eich@tuhh.de,
Website: www.tuhh.de/alt/oem/home.html 

Jasmine Ait-Djoudi | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tuhh.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Energiesparender Spin-Strom über magnetisches Feld und Temperatur steuerbar
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Hitzefrei im Elektromobil: Neuartige Materialien steigern Komfort und Reichweite von E-Fahrzeugen
16.08.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics