Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die effizientesten flexiblen Solarzellen

21.09.2011
Die an der Empa entwickelte Technik, mit der flexible Solarzellen mit einer Rekord-Energieeffizienz von 18,7% hergestellt werden können, wurde im renommierten «Nature Materials» veröffentlicht.

Der technologische Durchbruch der Empa-Forscher basiert auf der Modellierung der elektronischen Bandlücke im Halbleitermaterial der Solarzelle. Die entscheidende Schicht, die Sonnenlicht absorbiert und in Elektrizität umwandelt, besteht aus Kupfer-Indium-Gallium-Diselenid (kurz CIGS). Dem Team gelang es, während der verschiedenen Phasen des Aufdampfprozesses der Halbleiterschicht die Flussrate der Elemente zu kontrollieren, um eine genau definierte Bandlücke zu erzeugen.


An der Empa entwickelte flexible CIGS-Polymersolarzellen, die den neuen Effizienzrekordwert erreicht haben.

Flexible und leichte Hochleistungs-Solarzellen – etwa auf Kunststofffolien – bergen ein bedeutendes wirtschaftliches Potential: Die Produktionskosten für Solarzellen liessen sich durch das «Rolle-zu-Rolle»-Produktionsverfahren deutlich senken. Wegen des hohen Wirkungsgrades würden zudem auch die Kosten für das Gesamtsystem fallen. Dies wäre ein weiterer Schritt auf dem Weg zu kostengünstig produziertem Solarstrom.

Bis jetzt haben jedoch flexible, auf Kunststofffilmen aufgebrachte Solarzellen nicht die gewünschte Effizienz gezeigt; sie lagen weit hinter den Werten zurück, die mit Solarzellen auf Glassubstraten erreicht wurden. Der Grund: Beim Aufdampfen des Halbleitermaterials, das Sonnenlicht in Elektrizität umwandelt, halten Polymerfilme nur weit geringere Prozesstemperaturen aus als Glasplatten. Dies führte zu geringerer Effizienz der produzierten Zelle.

Rekorde in Teamarbeit

Das Forschungsteam der Abteilung «Dünnfilme und Fotovoltaik» an der Empa unter der Leitung von Ayodhya N. Tiwari beschäftigte sich mit der Entwicklung von hocheffizienten CIGS-Solarzellen – sowohl auf Glassubstraten als auch auf flexiblen Trägermaterialien. Der Gruppe, die zunächst an der ETH Zürich forschte und seit drei Jahren an der Empa tätig ist, gelang es in den vergangenen Jahren mehrfach, neue Effizienzrekorde für CIGS-Zellen aufzustellen. Mit dem aktuellen Rekordwert von 18,7% schloss Tiwari und sein Team nun beinahe die Effizienzlücke, die zuvor noch zwischen CIGS-Zellen auf flexiblen Materialien und CIGS-Zellen auf Glas bzw. polykristallinen Siliziumsolarwafern bestand. Die Einzelheiten der neuen Tieftemperatur-Herstellungsmethode und des Schichtaufbaus der neuartigen Zelle wurden nun in «Nature Materials» veröffentlicht.

Neue Herstellungsmethode

«Um solch hohe Effizienzraten zu erreichen, mussten wir die Rekombinationsverluste der durch Lichteinfall generierten Ladungsträger minimieren», sagt Tiwari. Die CIGS-Schichten, die durch gleichzeitiges Aufdampfen der Elemente bei rund 450°C entstehen, haben einen starken Gradienten in der Zusammensetzung: Die Diffusion der Elemente zur Bildung der gewünschten CIGS-Phase ist ungenügend; vor allem diffundiert Gallium (Ga) vorzugsweise zum elektrischen Rückseitenkontakt. Um dieses Problem zu umgehen, entwickelten die Doktoranden Adrian Chirilã und Patrick Bloesch einen neuen Aufdampf-Prozess, bei dem der Auftrag von Gallium und Indium in den verschiedenen Phasen der Fabrikation genau kontrolliert werden konnte. Das Ergebnis war eine optimierte Zusammensetzung der einzelnen Komponenten innerhalb der CIGS-Schicht. So werden die Ladungsträger effizienter eingefangen; die Rekombinationsverluste sind kleiner. CIGS-Solarzellen mit solch hoher Effizienz waren bisher nur auf Glassubstraten möglich, weil nur dort Produktionstemperaturen von mehr als 600°C erreichbar waren – Kunststofffolien halten solche Temperaturen nicht aus.

Auch billige Metallfolien als Träger geeignet

Tiwaris Forschungsgruppe gelang es nicht nur, einen Effizienzrekord von 18,7% auf Polymer-Folien zu setzen, sie erreichten auch auf einer Stahlfolie eine Effizienz von 17,7% – und das ohne eine Nitrid- oder Oxid-Sperrschicht zu benutzen, die gewöhnlich für Hochtemperaturprozesse auf Metallfolien nötig ist. Die Rekordwerte wurden vom unabhängigen Fraunhofer-Institut für Solare Energiesysteme (ISE) in Freiburg i. Br. (Deutschland) zertifiziert. «Wir haben damit gezeigt, dass der von uns entwickelte Tieftemperatur-Herstellungsprozess auch auf preiswerten Metallfolien anwendbar ist, etwa auf Aluminium- oder einfachen Schmiedestahlfolien. Mit unserer Technologie wird es also möglich sein, die Kosten für hocheffiziente Solarzellen gewaltig nach unten zu drücken», sagt Tiwari.

Forschern des Start-up-Unternehmens FLISOM und Empa-Forscher arbeiten nun gemeinsam daran, die Technologie der Tieftemperatur-Produktion von Solarzellen auf Industriemassstab zu skalieren und zu kommerzialisieren. Am Ende sollen miteinander verbundene Solarmodule im «Rolle-zu-Rolle»-Verfahren produziert werden können. Die Projekte wurden vom Schweizerischen Nationalfonds (SNF), von der Kommission für Technologie und Innovation (KTI), vom Bundesamt für Energie (BFE), von EU-Rahmenförderprogrammen sowie den Schweizer Firmen W. Blösch AG und FLISOM gefördert.

Sabine Voser | EMPA
Weitere Informationen:
http://www.empa.ch
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3122.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics